Computational Modeling and Simulation Examples in Bioengineering

Computational Modeling and Simulation Examples in Bioengineering

Author: Nenad Filipovic

Publisher: John Wiley & Sons

Published: 2021-12-14

Total Pages: 386

ISBN-13: 1119563941

DOWNLOAD EBOOK

A systematic overview of the quickly developing field of bioengineering—with state-of-the-art modeling software! Computational Modeling and Simulation Examples in Bioengineering provides a comprehensive introduction to the emerging field of bioengineering. It provides the theoretical background necessary to simulating pathological conditions in the bones, muscles, cardiovascular tissue, and cancers, as well as lung and vertigo disease. The methodological approaches used for simulations include the finite element, dissipative particle dynamics, and lattice Boltzman. The text includes access to a state-of-the-art software package for simulating the theoretical problems. In this way, the book enhances the reader's learning capabilities in the field of biomedical engineering. The aim of this book is to provide concrete examples of applied modeling in biomedical engineering. Examples in a wide range of areas equip the reader with a foundation of knowledge regarding which problems can be modeled with which numerical methods. With more practical examples and more online software support than any competing text, this book organizes the field of computational bioengineering into an accessible and thorough introduction. Computational Modeling and Simulation Examples in Bioengineering: Includes a state-of-the-art software package enabling readers to engage in hands-on modeling of the examples in the book Provides a background on continuum and discrete modeling, along with equations and derivations for three key numerical methods Considers examples in the modeling of bones, skeletal muscles, cartilage, tissue engineering, blood flow, plaque, and more Explores stent deployment modeling as well as stent design and optimization techniques Generates different examples of fracture fixation with respect to the advantages in medical practice applications Computational Modeling and Simulation Examples in Bioengineering is an excellent textbook for students of bioengineering, as well as a support for basic and clinical research. Medical doctors and other clinical professionals will also benefit from this resource and guide to the latest modeling techniques.


Computer Modeling in Bioengineering

Computer Modeling in Bioengineering

Author: Miloš Kojić

Publisher: Wiley

Published: 2008-06-09

Total Pages: 466

ISBN-13: 9780470060353

DOWNLOAD EBOOK

Bioengineering is a broad-based engineering discipline that applies engineering principles and design to challenges in human health and medicine, dealing with bio-molecular and molecular processes, product design, sustainability and analysis of biological systems. Applications that benefit from bioengineering include medical devices, diagnostic equipment and biocompatible materials, amongst others. Computer Modeling in Bioengineering offers a comprehensive reference for a large number of bioengineering topics, presenting important computer modeling problems and solutions for research and medical practice. Starting with basic theory and fundamentals, the book progresses to more advanced methods and applications, allowing the reader to become familiar with different topics to the desired extent. It includes unique and original topics alongside classical computational modeling methods, and each application is structured to explain the physiological background, phenomena that are to be modeled, the computational methods used in the model, and solutions of typical cases. The accompanying software contains over 80 examples, enabling the reader to study a topic using the theory and examples, then run the software to solve the same, or similar examples, varying the model parameters within a given range in order to investigate the problem at greater depth. Tutorials also guide the user in further exploring the modeled problem; these features promote easier learning and will help lecturers with presentations. Computer Modeling in Bioengineering includes computational methods for modelling bones, tissues, muscles, cardiovascular components, cartilage, cells and cancer nanotechnology as well as many other applications. It bridges the gap between engineering, biology and medicine, and will appeal not only to bioengineering students, lecturers and researchers, but also medical students and clinical researchers.


Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology

Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology

Author: Willem L. van Meurs

Publisher: McGraw Hill Professional

Published: 2011-08-07

Total Pages: 216

ISBN-13: 0071714464

DOWNLOAD EBOOK

THEORY AND PRACTICE OF MODELING AND SIMULATING HUMAN PHYSIOLOGY Written by a coinventor of the Human Patient Simulator (HPS) and past president of the Society in Europe for Simulation Applied to Medicine (SESAM), Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology is a compact and consistent introduction to this expanding field. The book divides the modeling and simulation process into five manageable steps--requirements, conceptual models, mathematical models, software implementation, and simulation results and validation. A framework and a basic set of deterministic, continuous-time models for the cardiorespiratory system are provided. This timely resource also addresses advanced topics, including sensitivity analysis and setting model requirements as part of an encompassing simulation and simulator design. Practical examples provide you with the skills to evaluate and adapt existing physiologic models or create new ones for specific applications. Coverage includes: Signals and systems Model requirements Conceptual models Mathematical models Software implementation Simulation results and model validation Cardiorespiratory system model Circulation Respiration Physiologic control Sensitivity analysis of a cardiovascular model Design of model-driven acute care training simulators “Uniquely qualified to author such a text, van Meurs is one of the original developers of CAE Healthcare’s Human Patient Simulator (HPS). ...His understanding of mathematics, human physiology, pharmacology, control systems, and systems engineering, combined with a conversational writing style, results in a readable text. ...The ample illustrations and tables also break up the text and make reading the book easier on the eyes. ...concise yet in conversational style, with real-life examples. This book is highly recommended for coursework in physiologic modeling and for all who are interested in simulator design and development. The book pulls all these topics together under one cover and is an important contribution to biomedical literature.” --IEEE Pulse, January 2014 “This book is written by a professional engineer who is unique in that he seems to have a natural understanding of 3 key areas as follows: the hardware involved with simulators, human physiology, and mathematical modeling. Willem van Meurs is one of the inventors of the model-driven human patient simulator (HPS), and so, he is very qualified to write this book. The book is written in a clear way, using the first person throughout, in a conversational manner, with a style that involves posing questions and answering them in subsequent text. ...The book starts with a very useful introduction and background chapter, setting out the scene for the rest of the book. ...I have used his book in enhancing my own talks and understanding human patient simulation and can strongly recommend it.” --Simulation in Healthcare December, 2012 Reviewed by Mark A. Tooley, Ph.D., Department of Medical Physics and Bioengineering, Royal United Hospital, Combe Park, Bath, UK.


A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences

A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences

Author: Riccardo Sacco

Publisher: Academic Press

Published: 2019-07-18

Total Pages: 856

ISBN-13: 0128125195

DOWNLOAD EBOOK

A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences provides a systematic methodology to the formulation of problems in biomedical engineering and the life sciences through the adoption of mathematical models based on physical principles, such as the conservation of mass, electric charge, momentum, and energy. It then teaches how to translate the mathematical formulation into a numerical algorithm that is implementable on a computer. The book employs computational models as synthesized tools for the investigation, quantification, verification, and comparison of different conjectures or scenarios of the behavior of a given compartment of the human body under physiological and pathological conditions. - Presents theoretical (modeling), biological (experimental), and computational (simulation) perspectives - Features examples, exercises, and MATLAB codes for further reader involvement - Covers basic and advanced functional and computational techniques throughout the book


Computational Bioengineering and Bioinformatics

Computational Bioengineering and Bioinformatics

Author: Nenad Filipovic

Publisher: Springer

Published: 2021-03-12

Total Pages: 169

ISBN-13: 9783030436605

DOWNLOAD EBOOK

This book explores the latest and most relevant topics in the field of computational bioengineering and bioinformatics, with a particular focus on patient-specific, disease-progression modeling. It covers computational methods for cardiovascular disease prediction, with an emphasis on biomechanics, biomedical decision support systems, data mining, personalized diagnostics, bio-signal processing, protein structure prediction, biomedical image processing, analysis and visualization, and high-performance computing. It also discusses state-of-the-art tools for disease characterization, and recent advances in areas such as biomechanics, cardiovascular engineering, patient-specific modeling, population-based modeling, multiscale modeling, image processing, data mining, biomedical decision-support systems, signal processing, biomaterials and dental biomechanics, tissue and cell engineering, computational chemistry and high-performance computing. As such, it is a valuable resource for researchers, medical and bioengineering students, and medical device and software experts


Modelling Organs, Tissues, Cells and Devices

Modelling Organs, Tissues, Cells and Devices

Author: Socrates Dokos

Publisher: Springer

Published: 2017-03-08

Total Pages: 504

ISBN-13: 3642548016

DOWNLOAD EBOOK

This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.


Computational Bioengineering

Computational Bioengineering

Author: Guigen Zhang

Publisher: CRC Press

Published: 2015-04-01

Total Pages: 508

ISBN-13: 1466517565

DOWNLOAD EBOOK

Arguably the first book of its kind, Computational Bioengineering explores the power of multidisciplinary computer modeling in bioengineering. Written by experts, the book examines the interplay of multiple governing principles underlying common biomedical devices and problems, bolstered by case studies. It shows you how to take advantage of the la


Biomedical Modeling and Simulation on a PC

Biomedical Modeling and Simulation on a PC

Author: Rogier P.van Wijk van Brievingh

Publisher: Springer Science & Business Media

Published: 2013-03-12

Total Pages: 533

ISBN-13: 1461391636

DOWNLOAD EBOOK

I have long had an interest in the life sciences, but have had few opportunities to indulge that interest in my professional activities. It has only been through simulation that those opportunities have arisen. Some of my most enjoyable classes were those I taught to students in the life sciences, where I attempted to show them the value of simulation to their discipline. That there is such a value cannot be questioned. Whether you are interested in population ecology, phar macokinetics, the cardiovascular system, or cell interaction, simulation can play a vital role in explaining the underlying processes and in enhancing our understanding of these processes. This book comprises an excellent collection of contributions, and clearly demonstrates the value of simulation in the particular areas of physiology and bioengineering. My main frustration when teaching these classes to people with little or no computer background was the lack of suitable simulation software. This di rectly inspired my own attempts at producing software usable by the computer novice. It is especially nice that software is available that enables readers to experience the examples in this book for themselves. I would like to congratulate and thank the editors, Rogier P. van Wijk van Brievingh and Dietmar P. P. Moller, for all of their excellent efforts. They should be proud of their achievement. This is the sixth volume in the Advances in Simulation series, and other volumes are in preparation.


Biological Modeling and Simulation

Biological Modeling and Simulation

Author: Russell Schwartz

Publisher: MIT Press

Published: 2008-07-25

Total Pages: 403

ISBN-13: 0262303396

DOWNLOAD EBOOK

A practice-oriented survey of techniques for computational modeling and simulation suitable for a broad range of biological problems. There are many excellent computational biology resources now available for learning about methods that have been developed to address specific biological systems, but comparatively little attention has been paid to training aspiring computational biologists to handle new and unanticipated problems. This text is intended to fill that gap by teaching students how to reason about developing formal mathematical models of biological systems that are amenable to computational analysis. It collects in one place a selection of broadly useful models, algorithms, and theoretical analysis tools normally found scattered among many other disciplines. It thereby gives the aspiring student a bag of tricks that will serve him or her well in modeling problems drawn from numerous subfields of biology. These techniques are taught from the perspective of what the practitioner needs to know to use them effectively, supplemented with references for further reading on more advanced use of each method covered. The text, which grew out of a class taught at Carnegie Mellon University, covers models for optimization, simulation and sampling, and parameter tuning. These topics provide a general framework for learning how to formulate mathematical models of biological systems, what techniques are available to work with these models, and how to fit the models to particular systems. Their application is illustrated by many examples drawn from a variety of biological disciplines and several extended case studies that show how the methods described have been applied to real problems in biology.


Computational Modeling and Simulation in Biomedical Research

Computational Modeling and Simulation in Biomedical Research

Author: Yee Siew Choong

Publisher: Bentham Science Publishers

Published: 2024-08-01

Total Pages: 159

ISBN-13: 981516547X

DOWNLOAD EBOOK

This reference provides a comprehensive overview of computational modelling and simulation for theoretical and practical biomedical research. The book explains basic concepts of computational biology and data modelling for learners and early career researchers. Chapters cover these topics: 1. An introduction to computational tools in biomedical research 2. Computational analysis of biological data 3. Algorithm development for computational modelling and simulation 4. The roles and application of protein modelling in biomedical research 5. Dynamics of biomolecular ligand recognition Key features include a simple, easy-to-understand presentation, detailed explanation of important concepts in computational modeling and simulations and references.