Computational Methods for Numerical Analysis with R

Computational Methods for Numerical Analysis with R

Author: James P Howard, II

Publisher: CRC Press

Published: 2017-07-12

Total Pages: 257

ISBN-13: 1498723640

DOWNLOAD EBOOK

Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.


Computational Methods for Numerical Analysis with R

Computational Methods for Numerical Analysis with R

Author: James P Howard, II

Publisher: CRC Press

Published: 2017-07-12

Total Pages: 274

ISBN-13: 1351646508

DOWNLOAD EBOOK

Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.


Computational Methods for Numerical Analysis with R

Computational Methods for Numerical Analysis with R

Author: II Howard

Publisher: CRC Press

Published: 2020-09-30

Total Pages: 257

ISBN-13: 9780367657918

DOWNLOAD EBOOK

Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.


Computational Methods for Inverse Problems

Computational Methods for Inverse Problems

Author: Curtis R. Vogel

Publisher: SIAM

Published: 2002-01-01

Total Pages: 195

ISBN-13: 0898717574

DOWNLOAD EBOOK

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.


Using R for Numerical Analysis in Science and Engineering

Using R for Numerical Analysis in Science and Engineering

Author: Victor A. Bloomfield

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 362

ISBN-13: 1315360497

DOWNLOAD EBOOK

Instead of presenting the standard theoretical treatments that underlie the various numerical methods used by scientists and engineers, Using R for Numerical Analysis in Science and Engineering shows how to use R and its add-on packages to obtain numerical solutions to the complex mathematical problems commonly faced by scientists and engineers. This practical guide to the capabilities of R demonstrates Monte Carlo, stochastic, deterministic, and other numerical methods through an abundance of worked examples and code, covering the solution of systems of linear algebraic equations and nonlinear equations as well as ordinary differential equations and partial differential equations. It not only shows how to use R’s powerful graphic tools to construct the types of plots most useful in scientific and engineering work, but also: Explains how to statistically analyze and fit data to linear and nonlinear models Explores numerical differentiation, integration, and optimization Describes how to find eigenvalues and eigenfunctions Discusses interpolation and curve fitting Considers the analysis of time series Using R for Numerical Analysis in Science and Engineering provides a solid introduction to the most useful numerical methods for scientific and engineering data analysis using R.


Computational Statistics with R

Computational Statistics with R

Author:

Publisher: Elsevier

Published: 2014-11-27

Total Pages: 413

ISBN-13: 044463441X

DOWNLOAD EBOOK

R is open source statistical computing software. Since the R core group was formed in 1997, R has been extended by a very large number of packages with extensive documentation along with examples freely available on the internet. It offers a large number of statistical and numerical methods and graphical tools and visualization of extraordinarily high quality. R was recently ranked in 14th place by the Transparent Language Popularity Index and 6th as a scripting language, after PHP, Python, and Perl. The book is designed so that it can be used right away by novices while appealing to experienced users as well. Each article begins with a data example that can be downloaded directly from the R website. Data analysis questions are articulated following the presentation of the data. The necessary R commands are spelled out and executed and the output is presented and discussed. Other examples of data sets with a different flavor and different set of commands but following the theme of the article are presented as well. Each chapter predents a hands-on-experience. R has superb graphical outlays and the book brings out the essentials in this arena. The end user can benefit immensely by applying the graphics to enhance research findings. The core statistical methodologies such as regression, survival analysis, and discrete data are all covered. - Addresses data examples that can be downloaded directly from the R website - No other source is needed to gain practical experience - Focus on the essentials in graphical outlays


Computational Methods for Fluid Flow

Computational Methods for Fluid Flow

Author: Roger Peyret

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 364

ISBN-13: 3642859526

DOWNLOAD EBOOK

In developing this book, we decided to emphasize applications and to provide methods for solving problems. As a result, we limited the mathematical devel opments and we tried as far as possible to get insight into the behavior of numerical methods by considering simple mathematical models. The text contains three sections. The first is intended to give the fundamen tals of most types of numerical approaches employed to solve fluid-mechanics problems. The topics of finite differences, finite elements, and spectral meth ods are included, as well as a number of special techniques. The second section is devoted to the solution of incompressible flows by the various numerical approaches. We have included solutions of laminar and turbulent-flow prob lems using finite difference, finite element, and spectral methods. The third section of the book is concerned with compressible flows. We divided this last section into inviscid and viscous flows and attempted to outline the methods for each area and give examples.


Introduction to Numerical Analysis

Introduction to Numerical Analysis

Author: J. Stoer

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 674

ISBN-13: 1475722729

DOWNLOAD EBOOK

On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.


Numerical Methods in Economics

Numerical Methods in Economics

Author: Kenneth L. Judd

Publisher: MIT Press

Published: 2023-04-04

Total Pages: 657

ISBN-13: 0262547740

DOWNLOAD EBOOK

To harness the full power of computer technology, economists need to use a broad range of mathematical techniques. In this book, Kenneth Judd presents techniques from the numerical analysis and applied mathematics literatures and shows how to use them in economic analyses. The book is divided into five parts. Part I provides a general introduction. Part II presents basics from numerical analysis on R^n, including linear equations, iterative methods, optimization, nonlinear equations, approximation methods, numerical integration and differentiation, and Monte Carlo methods. Part III covers methods for dynamic problems, including finite difference methods, projection methods, and numerical dynamic programming. Part IV covers perturbation and asymptotic solution methods. Finally, Part V covers applications to dynamic equilibrium analysis, including solution methods for perfect foresight models and rational expectation models. A website contains supplementary material including programs and answers to exercises.