Computational Liquid Crystal Photonics

Computational Liquid Crystal Photonics

Author: Salah Obayya

Publisher: John Wiley & Sons

Published: 2016-04-04

Total Pages: 280

ISBN-13: 1119042003

DOWNLOAD EBOOK

Optical computers and photonic integrated circuits in high capacity optical networks are hot topics, attracting the attention of expert researchers and commercial technology companies. Optical packet switching and routing technologies promise to provide a more efficient source of power, and footprint scaling with increased router capacity; integrating more optical processing elements into the same chip to increase on-chip processing capability and system intelligence has become a priority. This book is an in-depth look at modelling techniques and the simulation of a wide range of liquid crystal based modern photonic devices with enhanced high levels of flexible integration and enhanced power processing. It covers the physics of liquid crystal materials; techniques required for modelling liquid crystal based devices; the state-of-the art liquid crystal photonic based applications for telecommunications such as couplers, polarization rotators, polarization splitters and multiplexer-demultiplexers; liquid core photonic crystal fiber (LC-PCF) sensors including biomedical and temperature sensors; and liquid crystal photonic crystal based encryption systems for security applications. Key features Offers a unique source of in-depth learning on the fundamental principles of computational liquid crystal photonics. Explains complex concepts such as photonic crystals, liquid crystals, waveguides and modes, and frequency- and time-domain techniques used in the design of liquid crystal photonic crystal photonic devices in terms that are easy to understand. Demonstrates the useful properties of liquid crystals in a diverse and ever-growing list of technological applications. Requires only a foundational knowledge of mathematics and physics.


Computational Liquid Crystal Photonics

Computational Liquid Crystal Photonics

Author: Salah Obayya

Publisher: John Wiley & Sons

Published: 2016-04-20

Total Pages: 280

ISBN-13: 1119041988

DOWNLOAD EBOOK

Optical computers and photonic integrated circuits in high capacity optical networks are hot topics, attracting the attention of expert researchers and commercial technology companies. Optical packet switching and routing technologies promise to provide a more efficient source of power, and footprint scaling with increased router capacity; integrating more optical processing elements into the same chip to increase on-chip processing capability and system intelligence has become a priority. This book is an in-depth look at modelling techniques and the simulation of a wide range of liquid crystal based modern photonic devices with enhanced high levels of flexible integration and enhanced power processing. It covers the physics of liquid crystal materials; techniques required for modelling liquid crystal based devices; the state-of-the art liquid crystal photonic based applications for telecommunications such as couplers, polarization rotators, polarization splitters and multiplexer-demultiplexers; liquid core photonic crystal fiber (LC-PCF) sensors including biomedical and temperature sensors; and liquid crystal photonic crystal based encryption systems for security applications. Key features Offers a unique source of in-depth learning on the fundamental principles of computational liquid crystal photonics. Explains complex concepts such as photonic crystals, liquid crystals, waveguides and modes, and frequency- and time-domain techniques used in the design of liquid crystal photonic crystal photonic devices in terms that are easy to understand. Demonstrates the useful properties of liquid crystals in a diverse and ever-growing list of technological applications. Requires only a foundational knowledge of mathematics and physics.


Computational Photonic Sensors

Computational Photonic Sensors

Author: Mohamed Farhat O. Hameed

Publisher: Springer

Published: 2018-06-13

Total Pages: 446

ISBN-13: 3319765566

DOWNLOAD EBOOK

This book provides a comprehensive overview of the photonic sensing field by covering plasmonics, photonic crystal, and SOI techniques from theory to real sensing applications. A literature review of ultra-sensitive photonic sensors, including their design and application in industry, makes this a self-contained and comprehensive resource for different types of sensors, with high value to the biosensor sector in particular. The book is organized into four parts: Part I covers the basic theory of wave propagation, basic principles of sensing, surface plasmon resonance, and silicon photonics; Part II details the computational modeling techniques for the analysis and prediction of photonic sensors; Part III and Part IV cover the various mechanisms and light matter interaction scenarios behind the design of photonic sensors including photonic crystal fiber sensors and SOI sensors. This book is appropriate for academics and researchers specializing in photonic sensors; graduate students in the early and intermediate stages working in the areas of photonics, sensors, biophysics, and biomedical engineering; and to biomedical, environmental, and chemical engineers.


Computational Photonics

Computational Photonics

Author: Marek S. Wartak

Publisher: Cambridge University Press

Published: 2013-01-10

Total Pages: 467

ISBN-13: 1139851403

DOWNLOAD EBOOK

A comprehensive manual on the efficient modeling and analysis of photonic devices through building numerical codes, this book provides graduate students and researchers with the theoretical background and MATLAB programs necessary for them to start their own numerical experiments. Beginning by summarizing topics in optics and electromagnetism, the book discusses optical planar waveguides, linear optical fiber, the propagation of linear pulses, laser diodes, optical amplifiers, optical receivers, finite-difference time-domain method, beam propagation method and some wavelength division devices, solitons, solar cells and metamaterials. Assuming only a basic knowledge of physics and numerical methods, the book is ideal for engineers, physicists and practising scientists. It concentrates on the operating principles of optical devices, as well as the models and numerical methods used to describe them.


Computational Liquid Crystal Photonics

Computational Liquid Crystal Photonics

Author: Salah Obayya

Publisher: Wiley

Published: 2016-04-20

Total Pages: 280

ISBN-13: 9781119041986

DOWNLOAD EBOOK

Optical computers and photonic integrated circuits in high capacity optical networks are hot topics, attracting the attention of expert researchers and commercial technology companies. Optical packet switching and routing technologies promise to provide a more efficient source of power, and footprint scaling with increased router capacity; integrating more optical processing elements into the same chip to increase on-chip processing capability and system intelligence has become a priority. This book is an in-depth look at modelling techniques and the simulation of a wide range of liquid crystal based modern photonic devices with enhanced high levels of flexible integration and enhanced power processing. It covers the physics of liquid crystal materials; techniques required for modelling liquid crystal based devices; the state-of-the art liquid crystal photonic based applications for telecommunications such as couplers, polarization rotators, polarization splitters and multiplexer-demultiplexers; liquid core photonic crystal fiber (LC-PCF) sensors including biomedical and temperature sensors; and liquid crystal photonic crystal based encryption systems for security applications. Key features Offers a unique source of in-depth learning on the fundamental principles of computational liquid crystal photonics. Explains complex concepts such as photonic crystals, liquid crystals, waveguides and modes, and frequency- and time-domain techniques used in the design of liquid crystal photonic crystal photonic devices in terms that are easy to understand. Demonstrates the useful properties of liquid crystals in a diverse and ever-growing list of technological applications. Requires only a foundational knowledge of mathematics and physics.


Computational Photonics

Computational Photonics

Author: Salah Obayya

Publisher: John Wiley & Sons

Published: 2011-06-20

Total Pages: 268

ISBN-13: 1119957508

DOWNLOAD EBOOK

This book explores the state-of-the art in computational modelling techniques for photonic devices In this book, the author provides a comprehensive coverage of modern numerical modelling techniques for designing photonic devices for use in modern optical telecommunications systems. In addition the book presents the state-of-the-art in computational photonics techniques, covering methods such as full-vectorial finite-element beam propagation, bidirectional beam propagation, complex-envelope alternative direction implicit finite difference time domain, multiresolution time domain, and finite volume time domain. The book guides the reader through the concepts of modelling, analysing, designing and optimising the performance of a wide range of photonic devices by building their own numerical code using these methods. Key Features: Provides a thorough presentation of the state-of-the art in computational modelling techniques for photonics Contains broad coverage of both frequency- and time-domain techniques to suit a wide range of photonic devices Reviews existing commercial software packages for photonics Presents the advantages and disadvantages of the different modelling techniques as well as their suitability for various photonic devices Shows the reader how to model, analyse, design and optimise the performance of a wide range of photonic devices by building their own numerical code using these methods Accompanying website contains the numerical examples representing the numerical techniques in this book, as well as several design examples (http://www.wiley.com/go/obayya_computational) This book will serve as an invaluable reference for researchers, optical telecommunications engineers, engineers in the photonics industry. PhD and MSc students undertaking courses in the areas of photonics and optical telecommunications will also find this book of interest.


Optics and Nonlinear Optics of Liquid Crystals

Optics and Nonlinear Optics of Liquid Crystals

Author: Iam-Choon Khoo

Publisher: World Scientific

Published: 1993

Total Pages: 442

ISBN-13: 9789810209346

DOWNLOAD EBOOK

This is a monograph/text devoted to a detailed treatment of the optical, electro-optical and nonlinear optical properties of all the mesophases of liquid crystals and related processes, phenomena and application principles. Quantitative data on material and optical parameters spanning the ultraviolet, visible, infrared as well as the microwave regimes are presented along with detailed theoretical treatments of basic liquid crystal physics, material properties and nonlinear optics.Starting with a discussion on the basic building blocks of liquid crystalline molecules, the authors proceed to present in a pedagogical manner current theories, experiments, and applications of these unique and important optical properties of liquid crystals. Numerous tables of hard-to-find liquid crystalline parameters, a self-contained chapter on general nonlinear optics, and comprehensive literature review are also included.


Liquid Crystals

Liquid Crystals

Author: Iam-Choon Khoo

Publisher: John Wiley & Sons

Published: 2022-01-26

Total Pages: 420

ISBN-13: 1119705827

DOWNLOAD EBOOK

The latest edition of the leading resource on the properties and applications of liquid crystals In the newly revised Third Edition of Liquid Crystals, Professor Iam Choon Khoo delivers a comprehensive treatment of the fundamentals and applied aspects of optical physics, light scattering, electro-optics, and non-linear optics of liquid crystals. The book's opening chapters include coverage of the foundational physics and optical properties of liquid crystals and lead to more advanced content on the display, photonics and nonlinear optics applications of liquid crystals. New topics, including photonic crystals, metamaterials, ultrafast nonlinear optics, and fabrication methods for massive cholesteric and blue phase liquid crystals are discussed at length. Analytical methods and experimental observations of nonlinear light propagation through liquid crystalline and anisotropic materials and devices are also discussed. Liquid Crystals offers an insightful and unique treatment of the nonlinear optics of liquid crystals. New and expanded sections round out this new edition and add to the most up-to-date resource on this topic available today. The book also includes: A thorough introduction to liquid crystals, including their molecular structures, chemical compositions, order parameter, phase transition, and free energies Practical discussions of nematic, cholesteric, smectic, and ferroelectric liquid crystals, and explorations of linear and nonlinear light scattering in these phases. A detailed quantum mechanical treatment of the linear and nonlinear electronic optical response of liquid crystal molecules to optical fields. A self-contained discussion of the fundamentals of nonlinear optics/photonics and comprehensive review of all liquid crystalline materials-based nonlinear optical processes and applications. The latest edition of Liquid Crystals is an indispensable resource for graduate students, professors, research scientists and engineers in industrial or government laboratories. It's also an ideal reference for anyone seeking a one-stop textbook with complete coverage of the optical, electro-optical, and non-linear optical properties and processes of liquid crystals.


Computational Lithography

Computational Lithography

Author: Xu Ma

Publisher: John Wiley & Sons

Published: 2011-01-06

Total Pages: 225

ISBN-13: 111804357X

DOWNLOAD EBOOK

A Unified Summary of the Models and Optimization Methods Used in Computational Lithography Optical lithography is one of the most challenging areas of current integrated circuit manufacturing technology. The semiconductor industry is relying more on resolution enhancement techniques (RETs), since their implementation does not require significant changes in fabrication infrastructure. Computational Lithography is the first book to address the computational optimization of RETs in optical lithography, providing an in-depth discussion of optimal optical proximity correction (OPC), phase shifting mask (PSM), and off-axis illumination (OAI) RET tools that use model-based mathematical optimization approaches. The book starts with an introduction to optical lithography systems, electric magnetic field principles, and the fundamentals of optimization from a mathematical point of view. It goes on to describe in detail different types of optimization algorithms to implement RETs. Most of the algorithms developed are based on the application of the OPC, PSM, and OAI approaches and their combinations. Algorithms for coherent illumination as well as partially coherent illumination systems are described, and numerous simulations are offered to illustrate the effectiveness of the algorithms. In addition, mathematical derivations of all optimization frameworks are presented. The accompanying MATLAB® software files for all the RET methods described in the book make it easy for readers to run and investigate the codes in order to understand and apply the optimization algorithms, as well as to design a set of optimal lithography masks. The codes may also be used by readers for their research and development activities in their academic or industrial organizations. An accompanying MATLAB® software guide is also included. An accompanying MATLAB® software guide is included, and readers can download the software to use with the guide at ftp://ftp.wiley.com/public/sci_tech_med/computational_lithography. Tailored for both entry-level and experienced readers, Computational Lithography is meant for faculty, graduate students, and researchers, as well as scientists and engineers in industrial organizations whose research or career field is semiconductor IC fabrication, optical lithography, and RETs. Computational lithography draws from the rich theory of inverse problems, optics, optimization, and computational imaging; as such, the book is also directed to researchers and practitioners in these fields.


Nematicons

Nematicons

Author: Gaetano Assanto

Publisher: John Wiley & Sons

Published: 2012-10-16

Total Pages: 449

ISBN-13: 1118414624

DOWNLOAD EBOOK

The first book of its kind to introduce the fundamentals, basic features and models, potential applications and novel phenomena and its important applications in liquid crystal technology. Recognized leader in the field Gaetano Assanto outlines the peculiar characteristics of nematicons and the promise they have for the future growth of this captivating new field.