Computational Electromagnetics for RF and Microwave Engineering

Computational Electromagnetics for RF and Microwave Engineering

Author: David B. Davidson

Publisher: Cambridge University Press

Published: 2010-10-28

Total Pages: 531

ISBN-13: 1139492810

DOWNLOAD EBOOK

This hands-on introduction to computational electromagnetics (CEM) links theoretical coverage of the three key methods - the FDTD, MoM and FEM - to open source MATLAB codes (freely available online) in 1D, 2D and 3D, together with many practical hints and tips gleaned from the author's 25 years of experience in the field. Updated and extensively revised, this second edition includes a new chapter on 1D FEM analysis, and extended 3D treatments of the FDTD, MoM and FEM, with entirely new 3D MATLAB codes. Coverage of higher-order finite elements in 1D, 2D and 3D is also provided, with supporting code, in addition to a detailed 1D example of the FDTD from a FEM perspective. With running examples through the book and end-of-chapter problems to aid understanding, this is ideal for professional engineers and senior undergraduate/graduate students who need to master CEM and avoid common pitfalls in writing code and using existing software.


Computational Electromagnetics for RF and Microwave Engineering

Computational Electromagnetics for RF and Microwave Engineering

Author: David B. Davidson

Publisher: Cambridge University Press

Published: 2005-02-24

Total Pages: 413

ISBN-13: 1139471643

DOWNLOAD EBOOK

The numerical approximation of Maxwell's equations, Computational Electromagnetics (CEM), has emerged as a crucial enabling technology for radio-frequency, microwave and wireless engineering. The three most popular 'full-wave' methods - the Finite Difference Time Domain Method, the Method of Moments and the Finite Element Method - are introduced in this book by way of one or two-dimensional problems. Commercial or public domain codes implementing these methods are then applied to complex, real-world engineering problems, and a careful analysis of the reliability of the results obtained is performed, along with a discussion of the many pitfalls which can result in inaccurate and misleading solutions. The book will empower readers to become discerning users of CEM software, with an understanding of the underlying methods, and confidence in the results obtained. It also introduces readers to the art of code development. Aimed at senior undergraduate/graduate students taking CEM courses and practising engineers in the industry.


Computational Electromagnetics for RF and Microwave Engineering

Computational Electromagnetics for RF and Microwave Engineering

Author: David B. Davidson

Publisher: Cambridge University Press

Published: 2008-07-31

Total Pages: 0

ISBN-13: 9780521070126

DOWNLOAD EBOOK

The numerical approximation of Maxwell's equations, Computational Electromagnetics (CEM), has emerged as a crucial enabling technology for radio-frequency, microwave and wireless engineering. The three most popular 'full-wave' methods - the Finite Difference Time Domain Method, the Method of Moments, and the Finite Element Method - are introduced in this book by way of one or two-dimensional problems. Commercial or public domain codes implementing these methods are then applied to complex, real-world engineering problems, and a careful analysis of the reliability of the results obtained is performed, along with a discussion of the many pitfalls which can result in inaccurate and misleading solutions. The book will empower readers to become discerning users of CEM software, with an understanding of the underlying methods and confidence in the results obtained. It also introduces readers to the art of code development. This book is aimed at senior undergraduate/graduate students taking CEM courses and practising engineers in the industry.


Introduction to Electromagnetic and Microwave Engineering

Introduction to Electromagnetic and Microwave Engineering

Author: Paul R. Karmel

Publisher: John Wiley & Sons

Published: 1998-01-05

Total Pages: 730

ISBN-13: 9780471177814

DOWNLOAD EBOOK

Dies ist in erster Linie ein Lehrbuch und Nachschlagewerk für Studenten aller Bereiche der Elektrotechnik. Für Studienanfänger dient es als Einführung in die Theorie des Elektromagnetismus. Fortgeschrittene Studenten finden darin eine Einführung in die Mikrowellentechnik und deren Anwendungsgebiete. Die elektromagnetische und Mikrowellentechnik wird umfassend behandelt, besonders im Hinblick auf Mikrowellen- und Telekommunikationsanwendungen. Abgesehen von den Standardthemen wird auf elektromagnetisches Rechnen eingegangen auf der Basis von MathCad und finiter Elemente Methode. (01/98)


Analytical and Computational Methods in Electromagnetics

Analytical and Computational Methods in Electromagnetics

Author: Ramesh Garg

Publisher: Artech House

Published: 2008

Total Pages: 528

ISBN-13: 1596933860

DOWNLOAD EBOOK

Achieve optimal microwave system performance by mastering the principles and methods underlying today's powerful computational tools and commercial software in electromagnetics. This authoritative resource offers you clear and complete explanation of this essential electromagnetics knowledge, providing you with the analytical background you need to understand such key approaches as MoM (method of moments), FDTD (Finite Difference Time Domain) and FEM (Finite Element Method), and Green's functions. This comprehensive book includes all math necessary to master the material. Moreover, it features numerous solved problems that help ensure your understanding of key concepts throughout the book.


EM Material Characterization Techniques for Metamaterials

EM Material Characterization Techniques for Metamaterials

Author: Raveendranath U. Nair

Publisher: Springer

Published: 2017-09-21

Total Pages: 64

ISBN-13: 9811065179

DOWNLOAD EBOOK

This book presents a review of techniques based on waveguide systems, striplines, freespace systems and more, discussing the salient features of each method in detail. Since metamaterials are typically inhomogeneous and anisotropic, the experimental techniques for electromagnetic (EM) material characterization of metamaterial structures need to tackle several challenges. Furthermore, the modes supported by metamaterial structures are extremely sensitive to external perturbations. As such the measurement fixtures for EM material characterization have to be modified to account for such effects. The book provides a valuable resource for researchers working in the field of metamaterials


Surface Electromagnetics

Surface Electromagnetics

Author: Fan Yang

Publisher: Cambridge University Press

Published: 2019-06-20

Total Pages: 489

ISBN-13: 1108654207

DOWNLOAD EBOOK

Written by the leading experts in the field, this text provides systematic coverage of the theory, physics, functional designs, and engineering applications of advanced engineered electromagnetic surfaces. All the essential topics are included, from the fundamental theorems of surface electromagnetics, to analytical models, general sheet transmission conditions (GSTC), metasurface synthesis, and quasi-periodic analysis. A plethora of examples throughout illustrate the practical applications of surface electromagnetics, including gap waveguides, modulated metasurface antennas, transmit arrays, microwave imaging, cloaking, and orbital angular momentum (OAM ) beam generation, allowing readers to develop their own surface electromagnetics-based devices and systems. Enabling a fully comprehensive understanding of surface electromagnetics, this is an invaluable text for researchers, practising engineers and students working in electromagnetics antennas, metasurfaces and optics.


Computational Methods for Electromagnetic Phenomena

Computational Methods for Electromagnetic Phenomena

Author: Wei Cai

Publisher: Cambridge University Press

Published: 2013-01-03

Total Pages: 463

ISBN-13: 1107021057

DOWNLOAD EBOOK

The first book of its kind to cover a wide range of computational methods for electromagnetic phenomena, from atomistic to continuum scales, this integrated and balanced treatment of mathematical formulations, algorithms and the underlying physics enables us to engage in innovative and advanced interdisciplinary computational research.