Computation and Visualization of Geometric Partial Differential Equations

Computation and Visualization of Geometric Partial Differential Equations

Author: Christopher Tiee

Publisher: Lulu.com

Published: 2015-08-09

Total Pages: 304

ISBN-13: 1329440730

DOWNLOAD EBOOK

This is an extended version of my PhD thesis which extends the theory of finite element exterior calculus (FEEC) to parabolic evolution equations. In the extended version, I explore some more precise visualizations of the defined quantities, as well as explain how the modern theory of functional analysis applies. In the main part, I extend the theory of approximating evolution equations in Euclidean space (using FEEC) to hypersurfaces. After these main results, I describe some possible extensions to nonlinear equations. A few appendices detail one of the original motivations for getting into this theory in the first place: canonical geometries given as steady state solutions and extremals of certain functionals.


Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Differential Geometry: Partial Differential Equations on Manifolds

Differential Geometry: Partial Differential Equations on Manifolds

Author: Robert Everist Greene

Publisher: American Mathematical Soc.

Published: 1993

Total Pages: 585

ISBN-13: 082181494X

DOWNLOAD EBOOK

The first of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Part 1 begins with a problem list by S.T. Yau, successor to his 1980 list ( Sem


Geometric Partial Differential Equations - Part 2

Geometric Partial Differential Equations - Part 2

Author: Andrea Bonito

Publisher: Elsevier

Published: 2021-01-26

Total Pages: 572

ISBN-13: 0444643060

DOWNLOAD EBOOK

Besides their intrinsic mathematical interest, geometric partial differential equations (PDEs) are ubiquitous in many scientific, engineering and industrial applications. They represent an intellectual challenge and have received a great deal of attention recently. The purpose of this volume is to provide a missing reference consisting of self-contained and comprehensive presentations. It includes basic ideas, analysis and applications of state-of-the-art fundamental algorithms for the approximation of geometric PDEs together with their impacts in a variety of fields within mathematics, science, and engineering. - About every aspect of computational geometric PDEs is discussed in this and a companion volume. Topics in this volume include stationary and time-dependent surface PDEs for geometric flows, large deformations of nonlinearly geometric plates and rods, level set and phase field methods and applications, free boundary problems, discrete Riemannian calculus and morphing, fully nonlinear PDEs including Monge-Ampere equations, and PDE constrained optimization - Each chapter is a complete essay at the research level but accessible to junior researchers and students. The intent is to provide a comprehensive description of algorithms and their analysis for a specific geometric PDE class, starting from basic concepts and concluding with interesting applications. Each chapter is thus useful as an introduction to a research area as well as a teaching resource, and provides numerous pointers to the literature for further reading - The authors of each chapter are world leaders in their field of expertise and skillful writers. This book is thus meant to provide an invaluable, readable and enjoyable account of computational geometric PDEs


Transactions on Computational Science XII

Transactions on Computational Science XII

Author:

Publisher: Springer Science & Business Media

Published: 2011-07-27

Total Pages: 290

ISBN-13: 3642223354

DOWNLOAD EBOOK

The 12th issue of the Transactions on Computational Science journal, edited by Alexei Sourin and Olga Sourina, is devoted to the topic of cyberworlds. The 13 papers in the volume constitute revised and extended versions of a selection of contributions presented at CW 2010, the 20th International Conference on Cyberworlds, held in Singapore in October 2010. The selected papers span the areas of tangible interfaces, emotion recognition, haptic modeling, decision making under uncertainty, reliability measures, use of biometrics for avatar recognition, cybernavigation, multiuser virtual environments, spatial data sampling, web visualization, and interactive character animation system design.


Meshfree Methods for Partial Differential Equations V

Meshfree Methods for Partial Differential Equations V

Author: Michael Griebel

Publisher: Springer Science & Business Media

Published: 2010-11-04

Total Pages: 271

ISBN-13: 3642162290

DOWNLOAD EBOOK

The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is an extremely active research field, both in the mathematics and engineering communities. Meshfree methods are becoming increasingly mainstream in various applications. Due to their independence of a mesh, particle schemes and meshfree methods can deal with large geometric changes of the domain more easily than classical discretization techniques. Furthermore, meshfree methods offer a promising approach for the coupling of particle models to continuous models. This volume of LNCSE is a collection of the papers from the proceedings of the Fifth International Workshop on Meshfree Methods, held in Bonn in August 2009. The articles address the different meshfree methods and their use in applied mathematics, physics and engineering. The volume is intended to foster this highly active and exciting area of interdisciplinary research and to present recent advances and findings in this field.


Numerical Mathematics and Advanced Applications 2011

Numerical Mathematics and Advanced Applications 2011

Author: Andrea Cangiani

Publisher: Springer Science & Business Media

Published: 2013-01-20

Total Pages: 811

ISBN-13: 3642331343

DOWNLOAD EBOOK

The European Conferences on Numerical Mathematics and Advanced Applications (ENUMATH) are a series of conferences held every two years to provide a forum for discussion of new trends in numerical mathematics and challenging scientific and industrial applications at the highest level of international expertise. ENUMATH 2011 was hosted by the University of Leicester (UK) from the 5th to 9th September 2011. This proceedings volume contains more than 90 papers by speakers of the conference and gives an overview of recent developments in scientific computing, numerical analysis, and practical use of modern numerical techniques and algorithms in various applications. New results on finite element methods, multiscale methods, numerical linear algebra, and finite difference schemes are presented. A range of applications include computational problems from fluid dynamics, materials, image processing, and molecular dynamics.​


Stochastic Partial Differential Equations for Computer Vision with Uncertain Data

Stochastic Partial Differential Equations for Computer Vision with Uncertain Data

Author: Tobias Preusser

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 150

ISBN-13: 3031025946

DOWNLOAD EBOOK

In image processing and computer vision applications such as medical or scientific image data analysis, as well as in industrial scenarios, images are used as input measurement data. It is good scientific practice that proper measurements must be equipped with error and uncertainty estimates. For many applications, not only the measured values but also their errors and uncertainties, should be—and more and more frequently are—taken into account for further processing. This error and uncertainty propagation must be done for every processing step such that the final result comes with a reliable precision estimate. The goal of this book is to introduce the reader to the recent advances from the field of uncertainty quantification and error propagation for computer vision, image processing, and image analysis that are based on partial differential equations (PDEs). It presents a concept with which error propagation and sensitivity analysis can be formulated with a set of basic operations. The approach discussed in this book has the potential for application in all areas of quantitative computer vision, image processing, and image analysis. In particular, it might help medical imaging finally become a scientific discipline that is characterized by the classical paradigms of observation, measurement, and error awareness. This book is comprised of eight chapters. After an introduction to the goals of the book (Chapter 1), we present a brief review of PDEs and their numerical treatment (Chapter 2), PDE-based image processing (Chapter 3), and the numerics of stochastic PDEs (Chapter 4). We then proceed to define the concept of stochastic images (Chapter 5), describe how to accomplish image processing and computer vision with stochastic images (Chapter 6), and demonstrate the use of these principles for accomplishing sensitivity analysis (Chapter 7). Chapter 8 concludes the book and highlights new research topics for the future.


Handbook of Discrete and Computational Geometry

Handbook of Discrete and Computational Geometry

Author: Csaba D. Toth

Publisher: CRC Press

Published: 2017-11-22

Total Pages: 1928

ISBN-13: 1498711421

DOWNLOAD EBOOK

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.


Handbook of Discrete and Computational Geometry, Second Edition

Handbook of Discrete and Computational Geometry, Second Edition

Author: Csaba D. Toth

Publisher: CRC Press

Published: 2004-04-13

Total Pages: 1557

ISBN-13: 1420035312

DOWNLOAD EBOOK

While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more then 1500 pages, the Handbook of Discrete and Computational Geometry, Second Edition once again provides unparalleled, authoritative coverage of theory, methods, and applications. Highlights of the Second Edition: Thirteen new chapters: Five on applications and others on collision detection, nearest neighbors in high-dimensional spaces, curve and surface reconstruction, embeddings of finite metric spaces, polygonal linkages, the discrepancy method, and geometric graph theory Thorough revisions of all remaining chapters Extended coverage of computational geometry software, now comprising two chapters: one on the LEDA and CGAL libraries, the other on additional software Two indices: An Index of Defined Terms and an Index of Cited Authors Greatly expanded bibliographies