In a data-driven world, anything can be data. As the techniques and scale of data analysis advance, the need for a response from rhetoric and composition grows ever more pronounced. It is increasingly possible to examine thousands of documents and peer-review comments, labor-hours, and citation networks in composition courses and beyond. Composition and Big Data brings together a range of scholars, teachers, and administrators already working with big-data methods and datasets to kickstart a collective reckoning with the role that algorithmic and computational approaches can, or should, play in research and teaching in the field. Their work takes place in various contexts, including programmatic assessment, first-year pedagogy, stylistics, and learning transfer across the curriculum. From ethical reflections to database design, from corpus linguistics to quantitative autoethnography, these chapters implement and interpret the drive toward data in diverse ways.
This book covers three major parts of Big Data: concepts, theories and applications. Written by world-renowned leaders in Big Data, this book explores the problems, possible solutions and directions for Big Data in research and practice. It also focuses on high level concepts such as definitions of Big Data from different angles; surveys in research and applications; and existing tools, mechanisms, and systems in practice. Each chapter is independent from the other chapters, allowing users to read any chapter directly. After examining the practical side of Big Data, this book presents theoretical perspectives. The theoretical research ranges from Big Data representation, modeling and topology to distribution and dimension reducing. Chapters also investigate the many disciplines that involve Big Data, such as statistics, data mining, machine learning, networking, algorithms, security and differential geometry. The last section of this book introduces Big Data applications from different communities, such as business, engineering and science. Big Data Concepts, Theories and Applications is designed as a reference for researchers and advanced level students in computer science, electrical engineering and mathematics. Practitioners who focus on information systems, big data, data mining, business analysis and other related fields will also find this material valuable.
From the New York Times bestselling author of Big Data, a prediction for how data will revolutionize the market economy and make cash, banks, and big companies obsolete In modern history, the story of capitalism has been a story of firms and financiers. That's all going to change thanks to the Big Data revolution. As Viktor Mayer-Schörger, bestselling author of Big Data, and Thomas Ramge, who writes for The Economist, show, data is replacing money as the driver of market behavior. Big finance and big companies will be replaced by small groups and individual actors who make markets instead of making things: think Uber instead of Ford, or Airbnb instead of Hyatt. This is the dawn of the era of data capitalism. Will it be an age of prosperity or of calamity? This book provides the indispensable roadmap for securing a better future.
Is your HR department prepared to flip the big data switch? At every stage of the employee life cycle, a data-driven approach to HR can help companies make smarter decisions about their most important asset: their people. This title shows you how to navigate hiring climate and drive your business forward.
Scholars from a range of disciplines interrogate terms relevant to critical studies of big data, from abuse and aggregate to visualization and vulnerability. This pathbreaking work offers an interdisciplinary perspective on big data, interrogating key terms. Scholars from a range of disciplines interrogate concepts relevant to critical studies of big data--arranged glossary style, from from abuse and aggregate to visualization and vulnerability--both challenging conventional usage of such often-used terms as prediction and objectivity and introducing such unfamiliar ones as overfitting and copynorm. The contributors include both leading researchers, including N. Katherine Hayles, Johanna Drucker and Lisa Gitelman, and such emerging agenda-setting scholars as Safiya Noble, Sarah T. Roberts and Nicole Starosielski.
In a data-driven world, anything can be data. As the techniques and scale of data analysis advance, the need for a response from rhetoric and composition grows ever more pronounced. It is increasingly possible to examine thousands of documents and peer-review comments, labor-hours, and citation networks in composition courses and beyond. Composition and Big Data brings together a range of scholars, teachers, and administrators already working with big-data methods and datasets to kickstart a collective reckoning with the role that algorithmic and computational approaches can, or should, play in research and teaching in the field. Their work takes place in various contexts, including programmatic assessment, first-year pedagogy, stylistics, and learning transfer across the curriculum. From ethical reflections to database design, from corpus linguistics to quantitative autoethnography, these chapters implement and interpret the drive toward data in diverse ways.
Explore architectural approaches to building Data Lakes that ingest, index, manage, and analyze massive amounts of data using Big Data technologies About This Book Comprehend the intricacies of architecting a Data Lake and build a data strategy around your current data architecture Efficiently manage vast amounts of data and deliver it to multiple applications and systems with a high degree of performance and scalability Packed with industry best practices and use-case scenarios to get you up-and-running Who This Book Is For This book is for architects and senior managers who are responsible for building a strategy around their current data architecture, helping them identify the need for a Data Lake implementation in an enterprise context. The reader will need a good knowledge of master data management and information lifecycle management, and experience of Big Data technologies. What You Will Learn Identify the need for a Data Lake in your enterprise context and learn to architect a Data Lake Learn to build various tiers of a Data Lake, such as data intake, management, consumption, and governance, with a focus on practical implementation scenarios Find out the key considerations to be taken into account while building each tier of the Data Lake Understand Hadoop-oriented data transfer mechanism to ingest data in batch, micro-batch, and real-time modes Explore various data integration needs and learn how to perform data enrichment and data transformations using Big Data technologies Enable data discovery on the Data Lake to allow users to discover the data Discover how data is packaged and provisioned for consumption Comprehend the importance of including data governance disciplines while building a Data Lake In Detail A Data Lake is a highly scalable platform for storing huge volumes of multistructured data from disparate sources with centralized data management services. This book explores the potential of Data Lakes and explores architectural approaches to building data lakes that ingest, index, manage, and analyze massive amounts of data using batch and real-time processing frameworks. It guides you on how to go about building a Data Lake that is managed by Hadoop and accessed as required by other Big Data applications. This book will guide readers (using best practices) in developing Data Lake's capabilities. It will focus on architect data governance, security, data quality, data lineage tracking, metadata management, and semantic data tagging. By the end of this book, you will have a good understanding of building a Data Lake for Big Data. Style and approach Data Lake Development with Big Data provides architectural approaches to building a Data Lake. It follows a use case-based approach where practical implementation scenarios of each key component are explained. It also helps you understand how these use cases are implemented in a Data Lake. The chapters are organized in a way that mimics the sequential data flow evidenced in a Data Lake.
This book constitutes the proceedings of the 9th CCF Conference on Big Data, BigData 2021, held in Guangzhou, China, in January 2022. Due to the COVID-19 pandemic BigData 2021 was postponed to 2022. The 21 full papers presented in this volume were carefully reviewed and selected from 66 submissions. They present recent research on theoretical and technical aspects on big data, as well as on digital economy demands in big data applications.
With the proliferation of devices connected to the internet and connected to each other, the volume of data collected, stored, and processed is increasing every day, which brings new challenges in terms of information security. As big data expands with the help of public clouds, traditional security solutions tailored to private computing infrastructures and confined to a well-defined security perimeter, such as firewalls and demilitarized zones (DMZs), are no longer effective. New security functions are required to work over the heterogenous composition of diverse hardware, operating systems, and network domains. Security, Privacy, and Forensics Issues in Big Data is an essential research book that examines recent advancements in big data and the impact that these advancements have on information security and privacy measures needed for these networks. Highlighting a range of topics including cryptography, data analytics, and threat detection, this is an excellent reference source for students, software developers and engineers, security analysts, IT consultants, academicians, researchers, and professionals.