Complexes of Differential Operators

Complexes of Differential Operators

Author: Nikolai Tarkhanov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 407

ISBN-13: 9401103275

DOWNLOAD EBOOK

This book gives a systematic account of the facts concerning complexes of differential operators on differentiable manifolds. The central place is occupied by the study of general complexes of differential operators between sections of vector bundles. Although the global situation often contains nothing new as compared with the local one (that is, complexes of partial differential operators on an open subset of ]Rn), the invariant language allows one to simplify the notation and to distinguish better the algebraic nature of some questions. In the last 2 decades within the general theory of complexes of differential operators, the following directions were delineated: 1) the formal theory; 2) the existence theory; 3) the problem of global solvability; 4) overdetermined boundary problems; 5) the generalized Lefschetz theory of fixed points, and 6) the qualitative theory of solutions of overdetermined systems. All of these problems are reflected in this book to some degree. It is superfluous to say that different directions sometimes whimsically intersect. Considerable attention is given to connections and parallels with the theory of functions of several complex variables. One of the reproaches avowed beforehand by the author consists of the shortage of examples. The framework of the book has not permitted their number to be increased significantly. Certain parts of the book consist of results obtained by the author in 1977-1986. They have been presented in seminars in Krasnoyarsk, Moscow, Ekaterinburg, and N ovosi birsk.


Multidimensional Complex Analysis and Partial Differential Equations

Multidimensional Complex Analysis and Partial Differential Equations

Author: Francois Treves

Publisher: American Mathematical Soc.

Published: 1997

Total Pages: 290

ISBN-13: 0821805096

DOWNLOAD EBOOK

This collection of papers by outstanding contributors in analysis, partial differential equations and several complex variables is dedicated to Professor Treves in honour of his 65th birthday. There are five excellent survey articles covering analytic singularities, holomorphically nondegenerate algebraic hypersurfaces, analyticity of CR mappings, removable singularities of vector fields and local solvability for systems of vector fields. The other papers are original research contributions on topics such as Klein-Gordon and Dirac equations, Toeplitz operators, elliptic structures, complexification of Lie groups, and pseudo-differential operators.


Pseudo-differential Operators

Pseudo-differential Operators

Author: Luigi Rodino

Publisher: American Mathematical Soc.

Published: 2007-11-21

Total Pages: 432

ISBN-13: 9780821871553

DOWNLOAD EBOOK

This volume is based on lectures given at the workshop on pseudo-differential operators held at the Fields Institute from December 11, 2006 to December 15, 2006. The two main themes of the workshop and hence this volume are partial differential equations and time-frequency analysis. The contents of this volume consist of five mini-courses for graduate students and post-docs, and fifteen papers on related topics. Of particular interest in this volume are the mathematical underpinnings, applications and ramifications of the relatively new Stockwell transform, which is a hybrid of the Gabor transform and the wavelet transform. The twenty papers in this volume reflect modern trends in the development of pseudo-differential operators.


Partial Differential Equations in Several Complex Variables

Partial Differential Equations in Several Complex Variables

Author: So-chin Chen

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 396

ISBN-13: 9780821829615

DOWNLOAD EBOOK

This book is intended as both an introductory text and a reference book for those interested in studying several complex variables in the context of partial differential equations. In the last few decades, significant progress has been made in the study of Cauchy-Riemann and tangential Cauchy-Riemann operators; this progress greatly influenced the development of PDEs and several complex variables. After the background material in complex analysis is developed in Chapters 1 to 3, thenext three chapters are devoted to the solvability and regularity of the Cauchy-Riemann equations using Hilbert space techniques. The authors provide a systematic study of the Cauchy-Riemann equations and the \bar\partial-Neumann problem, including Hórmander's L2 existence progress on the globalregularity and irregularity of the \bar\partial-Neumann operators. The second part of the book gives a comprehensive study of the tangential Cauchy-Riemann equations, another important class of equations in several complex variables first studied by Lewy. An up-to-date account of the L2 theory for \bar\partial b operator is given. Explicit integral solution representations are constructed both on the Heisenberg groups and on strictly convex boundaries with estimates in Hölder and L2spaces. Embeddability of abstract CR structures is discussed in detail here for the first time.Titles in this series are co-published with International Press, Cambridge, MA.


Partial Differential Equations VIII

Partial Differential Equations VIII

Author: M.A. Shubin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 266

ISBN-13: 3642489443

DOWNLOAD EBOOK

This volume of the EMS contains three articles, on linear overdetermined systems of partial differential equations, dissipative Schroedinger operators, and index theorems. Each article presents a comprehensive survey of its subject, discussing fundamental results such as the construction of compatibility operators and complexes for elliptic, parabolic and hyperbolic coercive problems, the method of functional models and the Atiyah-Singer index theorem and its generalisations. Both classical and recent results are explained in detail and illustrated by means of examples.


Symmetries and Overdetermined Systems of Partial Differential Equations

Symmetries and Overdetermined Systems of Partial Differential Equations

Author: Michael Eastwood

Publisher: Springer Science & Business Media

Published: 2009-04-23

Total Pages: 565

ISBN-13: 0387738312

DOWNLOAD EBOOK

This three-week summer program considered the symmetries preserving various natural geometric structures. There are two parts to the proceedings. The articles in the first part are expository but all contain significant new material. The articles in the second part are concerned with original research. All articles were thoroughly refereed and the range of interrelated work ensures that this will be an extremely useful collection.


Topics In Complex Analysis, Differential Geometry And Methematical Physics - Proceedings Of The Third International Workshop On Complex Structures And Vector Fields

Topics In Complex Analysis, Differential Geometry And Methematical Physics - Proceedings Of The Third International Workshop On Complex Structures And Vector Fields

Author: Stancho Dimiev

Publisher: World Scientific

Published: 1997-07-01

Total Pages: 234

ISBN-13: 9814545899

DOWNLOAD EBOOK

The Third International Workshop on Complex Structures and Vector Fields was held to exchange information on current topics in complex analysis, differential geometry and mathematical physics, and to find new subjects in these fields.This volume contains many interesting and important articles in complex analysis (including quaternionic analysis), functional analysis, topology, differential geometry (hermitian geometry, surface theory), and mathematical physics (quantum mechanics, hamilton mechanics).


The Analysis of Solutions of Elliptic Equations

The Analysis of Solutions of Elliptic Equations

Author: Nikolai Tarkhanov

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 496

ISBN-13: 940158804X

DOWNLOAD EBOOK

This book is intended as a continuation of my book "Parametrix Method in the Theory of Differential Complexes" (see [291]). There, we considered complexes of differential operators between sections of vector bundles and we strived more than for details. Although there are many applications to for maximal generality overdetermined systems, such an approach left me with a certain feeling of dissat- faction, especially since a large number of interesting consequences can be obtained without a great effort. The present book is conceived as an attempt to shed some light on these new applications. We consider, as a rule, differential operators having a simple structure on open subsets of Rn. Currently, this area is not being investigated very actively, possibly because it is already very highly developed actively (cf. for example the book of Palamodov [213]). However, even in this (well studied) situation the general ideas from [291] allow us to obtain new results in the qualitative theory of differential equations and frequently in definitive form. The greater part of the material presented is related to applications of the L- rent series for a solution of a system of differential equations, which is a convenient way of writing the Green formula. The culminating application is an analog of the theorem of Vitushkin [303] for uniform and mean approximation by solutions of an elliptic system. Somewhat afield are several questions on ill-posedness, but the parametrix method enables us to obtain here a series of hitherto unknown facts.


The Analysis of Linear Partial Differential Operators III

The Analysis of Linear Partial Differential Operators III

Author: Lars Hörmander

Publisher: Springer Science & Business Media

Published: 1994-12-23

Total Pages: 552

ISBN-13: 9783540138280

DOWNLOAD EBOOK

From the reviews: "Volumes III and IV complete L. Hörmander's treatise on linear partial differential equations. They constitute the most complete and up-to-date account of this subject, by the author who has dominated it and made the most significant contributions in the last decades.....It is a superb book, which must be present in every mathematical library, and an indispensable tool for all - young and old - interested in the theory of partial differential operators." L. Boutet de Monvel in Bulletin of the American Mathematical Society, 1987. "This treatise is outstanding in every respect and must be counted among the great books in mathematics. It is certainly no easy reading (...) but a careful study is extremely rewarding for its wealth of ideas and techniques and the beauty of presentation." J. Brüning in Zentralblatt MATH, 1987.