Complex Fluid-Flows in Microfluidics

Complex Fluid-Flows in Microfluidics

Author: Francisco José Galindo-Rosales

Publisher: Springer

Published: 2017-05-26

Total Pages: 116

ISBN-13: 3319595938

DOWNLOAD EBOOK

This monograph contains expert knowledge on complex fluid-flows in microfluidic devices. The topical spectrum includes, but is not limited to, aspects such as the analysis, experimental characterization, numerical simulations and numerical optimization. The target audience primarily comprises researchers who intend to embark on activities in microfluidics. The book can also be beneficial as supplementary reading in graduate courses.


Complex Fluids in Biological Systems

Complex Fluids in Biological Systems

Author: Saverio E. Spagnolie

Publisher: Springer

Published: 2014-11-27

Total Pages: 449

ISBN-13: 1493920650

DOWNLOAD EBOOK

This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solutions in the numerical simulation of biologically relevant complex fluid flows This volume will be accessible to advanced undergraduate and beginning graduate students in engineering, mathematics, biology, and the physical sciences, but will appeal to anyone interested in the intricate and beautiful nature of complex fluids in the context of living systems.


Intelligent Design of Microfluidic Components for Newtonian and Complex Fluid Systems

Intelligent Design of Microfluidic Components for Newtonian and Complex Fluid Systems

Author: Konstantinos Zografos

Publisher:

Published: 2017

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Interest in microfluidics has increased dramatically in recent years, with applications spanning a wide range of fields. However, despite several advances, design of microfluidic devices still relies largely on trial-and-error. This thesis aims to go beyond this approach in favour of a rational design of microfluidic devices based on theoretical and numerical design rules and algorithms. More specifically, this research focuses on understanding and controlling fluid dynamics in applications involving complex non-Newtonian fluids in shear and extensional flows. Biomimetic principles and shape optimisation methods are employed to propose new designs for single-phase fluid flow. Furthermore, the single-phase numerical solver is extended to cope with two-phase systems, thus paving the way for new applications of these techniques. Focusing on shear-flows, a biomimetic principle appropriate for fully developed flows has been extended here to be applicable for non-Newtonian fluids, described by the power-law constitutive relationship. The derivation of the principle leads to a biomimetic rule that provides the appropriate dimensions for designing customised microfluidic bifurcating networks, able to generate specific wall shear-stress gradients along consecutive generations. A range of power-law fluids is examined numerically demonstrating great agreement with theoretical predictions. In terms of extensional flow, a range of shapes are proposed for designing microfluidic channels for studies related to the response of complex fluid systems under homogeneous strain-rate. Optimisation techniques are employed for finding the appropriate shapes to generate homogeneous extensional flows along the flow centre line of single stream (contraction-expansion channels) and the multi-stream designs (T-channels and flow focusing devices). The optimised geometries proposed exhibit enhanced performance compared to well defined geometrical shapes. The in-house single phase solver used in all numerical studies is upgraded here in order to solve numerically 3D-problems related to two-phase systems described by the Phase Field method. Here, the code is validated for 2D-problems only, using a range of test-cases demonstrating a very good quantitative agreement. Keywords: Non-Newtonian fluids, Shear-thinning and shear-thickening behaviour, Bifurcating networks, Biomimetics, Optimisation, Extensional flows, Two-phase systems.


Microhydrodynamics and Complex Fluids

Microhydrodynamics and Complex Fluids

Author: Dominique Barthès-Biesel

Publisher: CRC Press

Published: 2012-06-04

Total Pages: 257

ISBN-13: 1439881960

DOWNLOAD EBOOK

A self-contained textbook, Microhydrodynamics and Complex Fluids deals with the main phenomena that occur in slow, inertialess viscous flows often encountered in various industrial, biophysical, and natural processes. It examines a wide range of situations, from flows in thin films, porous media, and narrow channels to flows around suspended particles. Each situation is illustrated with examples that can be solved analytically so that the main physical phenomena are clear. It also discusses a range of numerical modeling techniques. Two chapters deal with the flow of complex fluids, presented first with the formal analysis developed for the mechanics of suspensions and then with the phenomenological tools of non-Newtonian fluid mechanics. All concepts are presented simply, with no need for complex mathematical tools. End-of-chapter exercises and exam problems help you test yourself. Dominique Barthès-Biesel has taught this subject for over 15 years and is well known for her contributions to low Reynolds number hydrodynamics. Building on the basics of continuum mechanics, this book is ideal for graduate students specializing in chemical or mechanical engineering, material science, bioengineering, and physics of condensed matter.


Micro- and Nanoscale Fluid Mechanics

Micro- and Nanoscale Fluid Mechanics

Author: Brian J. Kirby

Publisher: Cambridge University Press

Published: 2010-07-26

Total Pages: 536

ISBN-13: 1139489836

DOWNLOAD EBOOK

This text focuses on the physics of fluid transport in micro- and nanofabricated liquid-phase systems, with consideration of gas bubbles, solid particles, and macromolecules. This text was designed with the goal of bringing together several areas that are often taught separately - namely, fluid mechanics, electrodynamics, and interfacial chemistry and electrochemistry - with a focused goal of preparing the modern microfluidics researcher to analyse and model continuum fluid mechanical systems encountered when working with micro- and nanofabricated devices. This text serves as a useful reference for practising researchers but is designed primarily for classroom instruction. Worked sample problems are included throughout to assist the student, and exercises at the end of each chapter help facilitate class learning.


Microfluidics: History, Theory and Applications

Microfluidics: History, Theory and Applications

Author: William B. J. Zimmerman

Publisher: Springer Science & Business Media

Published: 2006-06-27

Total Pages: 320

ISBN-13: 9783211329948

DOWNLOAD EBOOK

Microfluidics is a microtechnological field dealing with the precise transport of fluids (liquids or gases) in small amounts (e.g. microliters, nanoliters or even picoliters). This book provides a useful introduction into this burgeoning field, and a specific application of microfluidics is presented. It also gives a survey of microfluidics.


Transport and Mixing in Laminar Flows

Transport and Mixing in Laminar Flows

Author: Roman Grigoriev

Publisher: John Wiley & Sons

Published: 2012-01-09

Total Pages: 178

ISBN-13: 3527639756

DOWNLOAD EBOOK

This book provides readers from academia and industry with an up-to-date overview of important advances in the field, dealing with such fundamental fluid mechanics problems as nonlinear transport phenomena and optimal control of mixing at the micro- and nanoscale. The editors provide both in-depth knowledge of the topic as well as vast experience in guiding an expert team of authors. The review style articles offer a coherent view of the micromixing methods, resulting in a much-needed synopsis of the theoretical models needed to direct experimental research and establish engineering principles for future applications. Since these processes are governed by nonlinear phenomena, this book will appeal to readers from both communities: fluid mechanics and nonlinear dynamics.