Low-Power CMOS Circuits

Low-Power CMOS Circuits

Author: Christian Piguet

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 438

ISBN-13: 1420036505

DOWNLOAD EBOOK

The power consumption of microprocessors is one of the most important challenges of high-performance chips and portable devices. In chapters drawn from Piguet's recently published Low-Power Electronics Design, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools addresses the design of low-power circuitry in deep submicron technologies. It provides a focused reference for specialists involved in designing low-power circuitry, from transistors to logic gates. The book is organized into three broad sections for convenient access. The first examines the history of low-power electronics along with a look at emerging and possible future technologies. It also considers other technologies, such as nanotechnologies and optical chips, that may be useful in designing integrated circuits. The second part explains the techniques used to reduce power consumption at low levels. These include clock gating, leakage reduction, interconnecting and communication on chips, and adiabatic circuits. The final section discusses various CAD tools for designing low-power circuits. This section includes three chapters that demonstrate the tools and low-power design issues at three major companies that produce logic synthesizers. Providing detailed examinations contributed by leading experts, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools supplies authoritative information on how to design and model for high performance with low power consumption in modern integrated circuits. It is a must-read for anyone designing modern computers or embedded systems.


Low-Power Electronics Design

Low-Power Electronics Design

Author: Christian Piguet

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 912

ISBN-13: 1420039555

DOWNLOAD EBOOK

The power consumption of integrated circuits is one of the most problematic considerations affecting the design of high-performance chips and portable devices. The study of power-saving design methodologies now must also include subjects such as systems on chips, embedded software, and the future of microelectronics. Low-Power Electronics Design covers all major aspects of low-power design of ICs in deep submicron technologies and addresses emerging topics related to future design. This volume explores, in individual chapters written by expert authors, the many low-power techniques born during the past decade. It also discusses the many different domains and disciplines that impact power consumption, including processors, complex circuits, software, CAD tools, and energy sources and management. The authors delve into what many specialists predict about the future by presenting techniques that are promising but are not yet reality. They investigate nanotechnologies, optical circuits, ad hoc networks, e-textiles, as well as human powered sources of energy. Low-Power Electronics Design delivers a complete picture of today's methods for reducing power, and also illustrates the advances in chip design that may be commonplace 10 or 15 years from now.


Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

Author: Sumit Ahuja

Publisher: Springer Science & Business Media

Published: 2011-10-22

Total Pages: 186

ISBN-13: 1461408725

DOWNLOAD EBOOK

This book presents novel research techniques, algorithms, methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design.


Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation

Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation

Author: Jorge Juan Chico

Publisher: Springer

Published: 2003-10-02

Total Pages: 647

ISBN-13: 3540397620

DOWNLOAD EBOOK

Welcome to the proceedings of PATMOS 2003. This was the 13th in a series of international workshops held in several locations in Europe. Over the years, PATMOS has gained recognition as one of the major European events devoted to power and timing aspects of integrated circuit and system design. Despite its signi?cant growth and development, PATMOS can still be considered as a very informal forum, featuring high-level scienti?c presentations together with open discussions and panel sessions in a free and relaxed environment. This year, PATMOS took place in Turin, Italy, organized by the Politecnico di Torino, with technical co-sponsorship from the IEEE Circuits and Systems Society and the generous support of the European Commission, as well as that of several industrial sponsors, including BullDAST, Cadence, Mentor Graphics, STMicroelectronics, and Synopsys. The objective of the PATMOS workshop is to provide a forum to discuss and investigate the emerging problems in methodologies and tools for the design of new generations of integrated circuits and systems. A major emphasis of the technical program is on speed and low-power aspects, with particular regard to modeling, characterization, design, and architectures.


Power Estimation on Electronic System Level using Linear Power Models

Power Estimation on Electronic System Level using Linear Power Models

Author: Stefan Schuermans

Publisher: Springer

Published: 2018-12-14

Total Pages: 346

ISBN-13: 303001875X

DOWNLOAD EBOOK

This book describes a flexible and largely automated methodology for adding the estimation of power consumption to high level simulations at the electronic system level (ESL). This method enables the inclusion of power consumption considerations from the very start of a design. This ability can help designers of electronic systems to create devices with low power consumption. The authors also demonstrate the implementation of the method, using the popular ESL language “SystemC”. This implementation enables most existing SystemC ESL simulations for power estimation with very little manual work. Extensive case-studies of a Network on Chip communication architecture and a dual-core application processor “ARM Cortex-A9” showcase the applicability and accuracy of the method to different types of electronic devices. The evaluation compares various trade-offs regarding amount of manual work, types of ESL models, achieved estimation accuracy and impact on the simulation speed. Describes a flexible and largely automated ESL power estimation method; Shows implementation of power estimation methodology in SystemC; Uses two extensive case studies to demonstrate method introduced.


Low-Power CMOS Design

Low-Power CMOS Design

Author: Anantha Chandrakasan

Publisher: John Wiley & Sons

Published: 1998-02-11

Total Pages: 656

ISBN-13: 0780334299

DOWNLOAD EBOOK

This collection of important papers provides a comprehensive overview of low-power system design, from component technologies and circuits to architecture, system design, and CAD techniques. LOW POWER CMOS DESIGN summarizes the key low-power contributions through papers written by experts in this evolving field.


Knowledge-Based and Intelligent Information and Engineering Systems

Knowledge-Based and Intelligent Information and Engineering Systems

Author: Juan D. Velásquez

Publisher: Springer

Published: 2009-09-30

Total Pages: 902

ISBN-13: 3642045928

DOWNLOAD EBOOK

On behalf of KES International and the KES 2009 Organising Committee we are very pleased to present these volumes, the proceedings of the 13th Inter- tional Conference on Knowledge-Based Intelligent Information and Engineering Systems, held at the Faculty of Physical Sciences and Mathematics, University of Chile, in Santiago de Chile. This year, the broad focus of the KES annual conference was on intelligent applications, emergent intelligent technologies and generic topics relating to the theory, methods, tools and techniques of intelligent systems. This covers a wide range of interests, attracting many high-quality papers, which were subjected to a very rigorous review process. Thus, these volumes contain the best papers, carefully selected from an impressively large number of submissions, on an - teresting range of intelligent-systems topics. For the ?rsttime in overa decade of KES events,the annualconferencecame to South America, to Chile. For many delegates this represented the antipode of their own countries. We recognise the tremendous e?ort it took for everyone to travel to Chile, and we hope this e?ort was rewarded. Delegates were presented with the opportunity of sharing their knowledge of high-tech topics on theory andapplicationofintelligentsystemsandestablishinghumannetworksforfuture work in similar research areas, creating new synergies, and perhaps even, new innovative ?elds of study. The fact that this occurred in an interesting and beautiful area of the world was an added bonus.


Electronic Design Automation for IC System Design, Verification, and Testing

Electronic Design Automation for IC System Design, Verification, and Testing

Author: Luciano Lavagno

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 644

ISBN-13: 1482254638

DOWNLOAD EBOOK

The first of two volumes in the Electronic Design Automation for Integrated Circuits Handbook, Second Edition, Electronic Design Automation for IC System Design, Verification, and Testing thoroughly examines system-level design, microarchitectural design, logic verification, and testing. Chapters contributed by leading experts authoritatively discuss processor modeling and design tools, using performance metrics to select microprocessor cores for integrated circuit (IC) designs, design and verification languages, digital simulation, hardware acceleration and emulation, and much more. New to This Edition: Major updates appearing in the initial phases of the design flow, where the level of abstraction keeps rising to support more functionality with lower non-recurring engineering (NRE) costs Significant revisions reflected in the final phases of the design flow, where the complexity due to smaller and smaller geometries is compounded by the slow progress of shorter wavelength lithography New coverage of cutting-edge applications and approaches realized in the decade since publication of the previous edition—these are illustrated by new chapters on high-level synthesis, system-on-chip (SoC) block-based design, and back-annotating system-level models Offering improved depth and modernity, Electronic Design Automation for IC System Design, Verification, and Testing provides a valuable, state-of-the-art reference for electronic design automation (EDA) students, researchers, and professionals.


Low Power Hardware Synthesis from Concurrent Action-Oriented Specifications

Low Power Hardware Synthesis from Concurrent Action-Oriented Specifications

Author: Gaurav Singh

Publisher: Springer Science & Business Media

Published: 2010-07-23

Total Pages: 173

ISBN-13: 1441964819

DOWNLOAD EBOOK

Human lives are getting increasingly entangled with technology, especially comp- ing and electronics. At each step we take, especially in a developing world, we are dependent on various gadgets such as cell phones, handheld PDAs, netbooks, me- cal prosthetic devices, and medical measurement devices (e.g., blood pressure m- itors, glucometers). Two important design constraints for such consumer electronics are their form factor and battery life. This translates to the requirements of reduction in the die area and reduced power consumption for the semiconductor chips that go inside these gadgets. Performance is also important, as increasingly sophisticated applications run on these devices, and many of them require fast response time. The form factor of such electronics goods depends not only on the overall area of the chips inside them but also on the packaging, which depends on thermal ch- acteristics. Thermal characteristics in turn depend on peak power signature of the chips. As a result, while the overall energy usage reduction increases battery life, peak power reduction in?uences the form factor. One more important aspect of these electronic equipments is that every 6 months or so, a newer feature needs to be added to keep ahead of the market competition, and hence new designs have to be completed with these new features, better form factor, battery life, and performance every few months. This extreme pressure on the time to market is another force that drives the innovations in design automation of semiconductor chips.