Evolutionary Constrained Optimization

Evolutionary Constrained Optimization

Author: Rituparna Datta

Publisher: Springer

Published: 2014-12-13

Total Pages: 330

ISBN-13: 8132221842

DOWNLOAD EBOOK

This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful for classroom teaching and future research.


Evolutionary Computation

Evolutionary Computation

Author: David B. Fogel

Publisher: John Wiley & Sons

Published: 2006-01-03

Total Pages: 294

ISBN-13: 0471749206

DOWNLOAD EBOOK

This Third Edition provides the latest tools and techniques that enable computers to learn The Third Edition of this internationally acclaimed publication provides the latest theory and techniques for using simulated evolution to achieve machine intelligence. As a leading advocate for evolutionary computation, the author has successfully challenged the traditional notion of artificial intelligence, which essentially programs human knowledge fact by fact, but does not have the capacity to learn or adapt as evolutionary computation does. Readers gain an understanding of the history of evolutionary computation, which provides a foundation for the author's thorough presentation of the latest theories shaping current research. Balancing theory with practice, the author provides readers with the skills they need to apply evolutionary algorithms that can solve many of today's intransigent problems by adapting to new challenges and learning from experience. Several examples are provided that demonstrate how these evolutionary algorithms learn to solve problems. In particular, the author provides a detailed example of how an algorithm is used to evolve strategies for playing chess and checkers. As readers progress through the publication, they gain an increasing appreciation and understanding of the relationship between learning and intelligence. Readers familiar with the previous editions will discover much new and revised material that brings the publication thoroughly up to date with the latest research, including the latest theories and empirical properties of evolutionary computation. The Third Edition also features new knowledge-building aids. Readers will find a host of new and revised examples. New questions at the end of each chapter enable readers to test their knowledge. Intriguing assignments that prepare readers to manage challenges in industry and research have been added to the end of each chapter as well. This is a must-have reference for professionals in computer and electrical engineering; it provides them with the very latest techniques and applications in machine intelligence. With its question sets and assignments, the publication is also recommended as a graduate-level textbook.


Computational Collective IntelligenceTechnologies and Applications

Computational Collective IntelligenceTechnologies and Applications

Author: Piotr Jedrzejowicz

Publisher: Springer Science & Business Media

Published: 2011-09-13

Total Pages: 540

ISBN-13: 3642239374

DOWNLOAD EBOOK

The two-volume set LNAI 6922 and LNAI 6923 constitutes the refereed proceedings of the Third International Conference on Computational Collective Intelligence, ICCCI 2011, held in Gdynia, Poland, in September 2011. The 112 papers in this two volume set presented together with 3 keynote speeches were carefully reviewed and selected from 300 submissions. The papers are organized in topical sections on knowledge management, machine learning and applications, autonomous and collective decision-making, collective computations and optimization, Web services and semantic Web, social networks and computational swarm intelligence and applications.


Evolutionary Optimization Algorithms

Evolutionary Optimization Algorithms

Author: Altaf Q. H. Badar

Publisher: CRC Press

Published: 2021-10-29

Total Pages: 274

ISBN-13: 1000462145

DOWNLOAD EBOOK

This comprehensive reference text discusses evolutionary optimization techniques, to find optimal solutions for single and multi-objective problems. The text presents each evolutionary optimization algorithm along with its history and other working equations. It also discusses variants and hybrids of optimization techniques. The text presents step-by-step solution to a problem and includes software’s like MATLAB and Python for solving optimization problems. It covers important optimization algorithms including single objective optimization, multi objective optimization, Heuristic optimization techniques, shuffled frog leaping algorithm, bacteria foraging algorithm and firefly algorithm. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, mechanical engineering, and computer science and engineering, this text: Provides step-by-step solution for each evolutionary optimization algorithm. Provides flowcharts and graphics for better understanding of optimization techniques. Discusses popular optimization techniques include particle swarm optimization and genetic algorithm. Presents every optimization technique along with the history and working equations. Includes latest software like Python and MATLAB.


Evolutionary Algorithms and Agricultural Systems

Evolutionary Algorithms and Agricultural Systems

Author: David G. Mayer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 110

ISBN-13: 1461517176

DOWNLOAD EBOOK

Evolutionary Algorithms and Agricultural Systems deals with the practical application of evolutionary algorithms to the study and management of agricultural systems. The rationale of systems research methodology is introduced, and examples listed of real-world applications. It is the integration of these agricultural systems models with optimization techniques, primarily genetic algorithms, which forms the focus of this book. The advantages are outlined, with examples of agricultural models ranging from national and industry-wide studies down to the within-farm scale. The potential problems of this approach are also discussed, along with practical methods of resolving these problems. Agricultural applications using alternate optimization techniques (gradient and direct-search methods, simulated annealing and quenching, and the tabu search strategy) are also listed and discussed. The particular problems and methodologies of these algorithms, including advantageous features that may benefit a hybrid approach or be usefully incorporated into evolutionary algorithms, are outlined. From consideration of this and the published examples, it is concluded that evolutionary algorithms are the superior method for the practical optimization of models of agricultural and natural systems. General recommendations on robust options and parameter settings for evolutionary algorithms are given for use in future studies. Evolutionary Algorithms and Agricultural Systems will prove useful to practitioners and researchers applying these methods to the optimization of agricultural or natural systems, and would also be suited as a text for systems management, applied modeling, or operations research.


Foundations of Intelligent Systems

Foundations of Intelligent Systems

Author: Zbigniew W. Ras

Publisher: Springer Science & Business Media

Published: 1999-05-12

Total Pages: 700

ISBN-13: 9783540659655

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 11th International Symposium on Methodologies for Intelligent Systems, ISMIS '99, held in Warsaw, Poland, in June 1999. The 66 revised full papers presented together with five invited papers were carefully reviewed and selected from a total of 115 submissions. The volume is divided into topical sections on logics for AI, intelligent information retrieval, intelligent information systems, learning and knowledge discovery, computer vision, knowledge representation, and evolutionary computation.


Success in Evolutionary Computation

Success in Evolutionary Computation

Author: Yin Shan

Publisher: Springer Science & Business Media

Published: 2008-02-29

Total Pages: 372

ISBN-13: 354076285X

DOWNLOAD EBOOK

Darwinian evolutionary theory is one of the most important theories in human history for it has equipped us with a valuable tool to understand the amazing world around us. There can be little surprise, therefore, that Evolutionary Computation (EC), inspired by natural evolution, has been so successful in providing high quality solutions in a large number of domains. EC includes a number of techniques, such as Genetic Algorithms, Genetic Programming, Evolution Strategy and Evolutionary Programming, which have been used in a diverse range of highly successful applications. This book brings together some of these EC applications in fields including electronics, telecommunications, health, bioinformatics, supply chain and other engineering domains, to give the audience, including both EC researchers and practitioners, a glimpse of this exciting rapidly evolving field.


Applications of Evolutionary Computation

Applications of Evolutionary Computation

Author: Cecilia Di Chio

Publisher: Springer Science & Business Media

Published: 2011-04-19

Total Pages: 542

ISBN-13: 3642205194

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the International Conference on the Applications of Evolutionary Computation, EvoApplications 2011, held in Torino, Italy, in April 2011 colocated with the Evo* 2011 events. Thanks to the large number of submissions received, the proceedings for EvoApplications 2011 are divided across two volumes (LNCS 6624 and 6625). The present volume contains contributions for EvoCOMNET, EvoFIN, EvoIHOT, EvoMUSART, EvoSTIM, and EvoTRANSLOC. The 51 revised full papers presented were carefully reviewed and selected from numerous submissions. This volume presents an overview about the latest research in EC. Areas where evolutionary computation techniques have been applied range from telecommunication networks to complex systems, finance and economics, games, image analysis, evolutionary music and art, parameter optimization, scheduling, and logistics. These papers may provide guidelines to help new researchers tackling their own problem using EC.


Evolutionary Algorithms

Evolutionary Algorithms

Author: Alain Petrowski

Publisher: John Wiley & Sons

Published: 2017-04-12

Total Pages: 262

ISBN-13: 1119136385

DOWNLOAD EBOOK

Evolutionary algorithms are bio-inspired algorithms based on Darwin’s theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods. In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms. Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning.


Advances in Differential Evolution

Advances in Differential Evolution

Author: Uday K. Chakraborty

Publisher: Springer Science & Business Media

Published: 2008-07-23

Total Pages: 343

ISBN-13: 3540688277

DOWNLOAD EBOOK

Differential evolution is arguably one of the hottest topics in today's computational intelligence research. This book seeks to present a comprehensive study of the state of the art in this technology and also directions for future research. The fourteen chapters of this book have been written by leading experts in the area. The first seven chapters focus on algorithm design, while the last seven describe real-world applications. Chapter 1 introduces the basic differential evolution (DE) algorithm and presents a broad overview of the field. Chapter 2 presents a new, rotationally invariant DE algorithm. The role of self-adaptive control parameters in DE is investigated in Chapter 3. Chapters 4 and 5 address constrained optimization; the former develops suitable stopping conditions for the DE run, and the latter presents an improved DE algorithm for problems with very small feasible regions. A novel DE algorithm, based on the concept of "opposite" points, is the topic of Chapter 6. Chapter 7 provides a survey of multi-objective differential evolution algorithms. A review of the major application areas of differential evolution is presented in Chapter 8. Chapter 9 discusses the application of differential evolution in two important areas of applied electromagnetics. Chapters 10 and 11 focus on applications of hybrid DE algorithms to problems in power system optimization. Chapter 12 applies the DE algorithm to computer chess. The use of DE to solve a problem in bioprocess engineering is discussed in Chapter 13. Chapter 14 describes the application of hybrid differential evolution to a problem in control engineering.