Compactification of the Drinfeld Modular Surfaces

Compactification of the Drinfeld Modular Surfaces

Author: Thomas Lehmkuhl

Publisher: American Mathematical Soc.

Published: 2009-01-21

Total Pages: 113

ISBN-13: 0821842447

DOWNLOAD EBOOK

In this article the author describes in detail a compactification of the moduli schemes representing Drinfeld modules of rank 2 endowed with some level structure. The boundary is a union of copies of moduli schemes for Drinfeld modules of rank 1, and its points are interpreted as Tate data. The author also studies infinitesimal deformations of Drinfeld modules with level structure.


Drinfeld Modules

Drinfeld Modules

Author: Mihran Papikian

Publisher: Springer Nature

Published: 2023-03-31

Total Pages: 541

ISBN-13: 3031197070

DOWNLOAD EBOOK

This textbook offers an introduction to the theory of Drinfeld modules, mathematical objects that are fundamental to modern number theory. After the first two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic importance, culminating in the case of global fields. Throughout, numerous number-theoretic applications are discussed, and the analogies between classical and function field arithmetic are emphasized. Drinfeld Modules guides readers from the basics to research topics in function field arithmetic, assuming only familiarity with graduate-level abstract algebra as prerequisite. With exercises of varying difficulty included in each section, the book is designed to be used as the primary textbook for a graduate course on the topic, and may also provide a supplementary reference for courses in algebraic number theory, elliptic curves, and related fields. Furthermore, researchers in algebra and number theory will appreciate it as a self-contained reference on the topic.


Multi-Pulse Evolution and Space-Time Chaos in Dissipative Systems

Multi-Pulse Evolution and Space-Time Chaos in Dissipative Systems

Author: Sergey Zelik

Publisher: American Mathematical Soc.

Published: 2009-03-06

Total Pages: 112

ISBN-13: 0821842641

DOWNLOAD EBOOK

The authors study semilinear parabolic systems on the full space ${\mathbb R}^n$ that admit a family of exponentially decaying pulse-like steady states obtained via translations. The multi-pulse solutions under consideration look like the sum of infinitely many such pulses which are well separated. They prove a global center-manifold reduction theorem for the temporal evolution of such multi-pulse solutions and show that the dynamics of these solutions can be described by an infinite system of ODEs for the positions of the pulses. As an application of the developed theory, The authors verify the existence of Sinai-Bunimovich space-time chaos in 1D space-time periodically forced Swift-Hohenberg equation.


Abstract" Homomorphisms of Split Kac-Moody Groups"

Abstract

Author: Pierre-Emmanuel Caprace

Publisher: American Mathematical Soc.

Published: 2009-03-06

Total Pages: 108

ISBN-13: 0821842587

DOWNLOAD EBOOK

This work is devoted to the isomorphism problem for split Kac-Moody groups over arbitrary fields. This problem turns out to be a special case of a more general problem, which consists in determining homomorphisms of isotropic semisimple algebraic groups to Kac-Moody groups, whose image is bounded. Since Kac-Moody groups possess natural actions on twin buildings, and since their bounded subgroups can be characterized by fixed point properties for these actions, the latter is actually a rigidity problem for algebraic group actions on twin buildings. The author establishes some partial rigidity results, which we use to prove an isomorphism theorem for Kac-Moody groups over arbitrary fields of cardinality at least $4$. In particular, he obtains a detailed description of automorphisms of Kac-Moody groups. This provides a complete understanding of the structure of the automorphism group of Kac-Moody groups over ground fields of characteristic $0$. The same arguments allow to treat unitary forms of complex Kac-Moody groups. In particular, the author shows that the Hausdorff topology that these groups carry is an invariant of the abstract group structure. Finally, the author proves the non-existence of cocentral homomorphisms of Kac-Moody groups of indefinite type over infinite fields with finite-dimensional target. This provides a partial solution to the linearity problem for Kac-Moody groups.


Hypocoercivity

Hypocoercivity

Author: CŽdric Villani

Publisher: American Mathematical Soc.

Published: 2009-10-08

Total Pages: 154

ISBN-13: 0821844989

DOWNLOAD EBOOK

This memoir attempts at a systematic study of convergence to stationary state for certain classes of degenerate diffusive equations, taking the general form ${\frac{\partial f}{\partial t}}+ L f =0$. The question is whether and how one can overcome the degeneracy by exploiting commutators.


Points and Curves in the Monster Tower

Points and Curves in the Monster Tower

Author: Richard Montgomery

Publisher: American Mathematical Soc.

Published: 2010-01-15

Total Pages: 154

ISBN-13: 0821848186

DOWNLOAD EBOOK

Cartan introduced the method of prolongation which can be applied either to manifolds with distributions (Pfaffian systems) or integral curves to these distributions. Repeated application of prolongation to the plane endowed with its tangent bundle yields the Monster tower, a sequence of manifolds, each a circle bundle over the previous one, each endowed with a rank $2$ distribution. In an earlier paper (2001), the authors proved that the problem of classifying points in the Monster tower up to symmetry is the same as the problem of classifying Goursat distribution flags up to local diffeomorphism. The first level of the Monster tower is a three-dimensional contact manifold and its integral curves are Legendrian curves. The philosophy driving the current work is that all questions regarding the Monster tower (and hence regarding Goursat distribution germs) can be reduced to problems regarding Legendrian curve singularities.


Moderate Deviations for the Range of Planar Random Walks

Moderate Deviations for the Range of Planar Random Walks

Author: Richard F. Bass

Publisher: American Mathematical Soc.

Published: 2009-03-06

Total Pages: 98

ISBN-13: 0821842870

DOWNLOAD EBOOK

Given a symmetric random walk in ${\mathbb Z}^2$ with finite second moments, let $R_n$ be the range of the random walk up to time $n$. The authors study moderate deviations for $R_n -{\mathbb E}R_n$ and ${\mathbb E}R_n -R_n$. They also derive the corresponding laws of the iterated logarithm.


Index Theory, Eta Forms, and Deligne Cohomology

Index Theory, Eta Forms, and Deligne Cohomology

Author: Ulrich Bunke

Publisher: American Mathematical Soc.

Published: 2009-03-06

Total Pages: 134

ISBN-13: 0821842846

DOWNLOAD EBOOK

This paper sets up a language to deal with Dirac operators on manifolds with corners of arbitrary codimension. In particular the author develops a precise theory of boundary reductions. The author introduces the notion of a taming of a Dirac operator as an invertible perturbation by a smoothing operator. Given a Dirac operator on a manifold with boundary faces the author uses the tamings of its boundary reductions in order to turn the operator into a Fredholm operator. Its index is an obstruction against extending the taming from the boundary to the interior. In this way he develops an inductive procedure to associate Fredholm operators to Dirac operators on manifolds with corners and develops the associated obstruction theory.


Composition Operators on Hardy-Orlicz Spaces

Composition Operators on Hardy-Orlicz Spaces

Author: Pascal Lefèvre

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 87

ISBN-13: 082184637X

DOWNLOAD EBOOK

"The authors investigate composition operators on Hardy-Orlicz spaces when the Orlicz function Psi grows rapidly: compactness, weak compactness, to be p-summing, order bounded, ... , and show how these notions behave according to the growth of Psi. They introduce an adapted version of Carleson measure. They construct various examples showing that their results are essentially sharp. In the last part, they study the case of Bergman-Orlicz spaces."--Publisher's description.


Compactifications of Symmetric and Locally Symmetric Spaces

Compactifications of Symmetric and Locally Symmetric Spaces

Author: Armand Borel

Publisher: Springer Science & Business Media

Published: 2006-07-25

Total Pages: 477

ISBN-13: 0817644660

DOWNLOAD EBOOK

Introduces uniform constructions of most of the known compactifications of symmetric and locally symmetric spaces, with emphasis on their geometric and topological structures Relatively self-contained reference aimed at graduate students and research mathematicians interested in the applications of Lie theory and representation theory to analysis, number theory, algebraic geometry and algebraic topology