Combinatorial Physics

Combinatorial Physics

Author: Adrian Tanasa

Publisher: Oxford University Press

Published: 2021

Total Pages: 409

ISBN-13: 0192895494

DOWNLOAD EBOOK

The goal of the book is to use combinatorial techniques to solve fundamental physics problems, and vice-versa, to use theoretical physics techniques to solve combinatorial problems.


Asymptotic Combinatorics with Application to Mathematical Physics

Asymptotic Combinatorics with Application to Mathematical Physics

Author: V.A. Malyshev

Publisher: Springer Science & Business Media

Published: 2002-08-31

Total Pages: 352

ISBN-13: 9781402007927

DOWNLOAD EBOOK

New and striking results obtained in recent years from an intensive study of asymptotic combinatorics have led to a new, higher level of understanding of related problems: the theory of integrable systems, the Riemann-Hilbert problem, asymptotic representation theory, spectra of random matrices, combinatorics of Young diagrams and permutations, and even some aspects of quantum field theory.


Combinatorics and Physics

Combinatorics and Physics

Author: Kurusch Ebrahimi-Fard

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 480

ISBN-13: 0821853295

DOWNLOAD EBOOK

This book is based on the mini-workshop Renormalization, held in December 2006, and the conference Combinatorics and Physics, held in March 2007. Both meetings took place at the Max-Planck-Institut fur Mathematik in Bonn, Germany. Research papers in the volume provide an overview of applications of combinatorics to various problems, such as applications to Hopf algebras, techniques to renormalization problems in quantum field theory, as well as combinatorial problems appearing in the context of the numerical integration of dynamical systems, in noncommutative geometry and in quantum gravity. In addition, it contains several introductory notes on renormalization Hopf algebras, Wilsonian renormalization and motives.


Physics and Theoretical Computer Science

Physics and Theoretical Computer Science

Author: Jean-Pierre Gazeau

Publisher: IOS Press

Published: 2007

Total Pages: 349

ISBN-13: 1586037064

DOWNLOAD EBOOK

Aims to reinforce the interface between physical sciences, theoretical computer science, and discrete mathematics. This book assembles theoretical physicists and specialists of theoretical informatics and discrete mathematics in order to learn about developments in cryptography, algorithmics, and more.


A Combinatorial Perspective on Quantum Field Theory

A Combinatorial Perspective on Quantum Field Theory

Author: Karen Yeats

Publisher: Springer

Published: 2016-11-23

Total Pages: 120

ISBN-13: 3319475517

DOWNLOAD EBOOK

This book explores combinatorial problems and insights in quantum field theory. It is not comprehensive, but rather takes a tour, shaped by the author’s biases, through some of the important ways that a combinatorial perspective can be brought to bear on quantum field theory. Among the outcomes are both physical insights and interesting mathematics. The book begins by thinking of perturbative expansions as kinds of generating functions and then introduces renormalization Hopf algebras. The remainder is broken into two parts. The first part looks at Dyson-Schwinger equations, stepping gradually from the purely combinatorial to the more physical. The second part looks at Feynman graphs and their periods. The flavour of the book will appeal to mathematicians with a combinatorics background as well as mathematical physicists and other mathematicians.


Information, Physics, and Computation

Information, Physics, and Computation

Author: Marc Mézard

Publisher: Oxford University Press

Published: 2009-01-22

Total Pages: 584

ISBN-13: 019857083X

DOWNLOAD EBOOK

A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.


Combinatorial Mathematics

Combinatorial Mathematics

Author: Douglas B. West

Publisher: Cambridge University Press

Published: 2021

Total Pages: 990

ISBN-13: 1107058589

DOWNLOAD EBOOK

This is the most readable and thorough graduate textbook and reference for combinatorics, covering enumeration, graphs, sets, and methods.


Analytic Combinatorics

Analytic Combinatorics

Author: Philippe Flajolet

Publisher: Cambridge University Press

Published: 2009-01-15

Total Pages: 825

ISBN-13: 1139477161

DOWNLOAD EBOOK

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.


Computational Discrete Mathematics

Computational Discrete Mathematics

Author: Sriram Pemmaraju

Publisher: Cambridge University Press

Published: 2009-10-15

Total Pages: 615

ISBN-13: 1107268710

DOWNLOAD EBOOK

This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica®, is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.