Combinatorial Stochastic Processes

Combinatorial Stochastic Processes

Author: Jim Pitman

Publisher: Springer Science & Business Media

Published: 2006-05-11

Total Pages: 257

ISBN-13: 354030990X

DOWNLOAD EBOOK

The purpose of this text is to bring graduate students specializing in probability theory to current research topics at the interface of combinatorics and stochastic processes. There is particular focus on the theory of random combinatorial structures such as partitions, permutations, trees, forests, and mappings, and connections between the asymptotic theory of enumeration of such structures and the theory of stochastic processes like Brownian motion and Poisson processes.


Convergence of Stochastic Processes

Convergence of Stochastic Processes

Author: D. Pollard

Publisher: David Pollard

Published: 1984-10-08

Total Pages: 223

ISBN-13: 0387909907

DOWNLOAD EBOOK

Functionals on stochastic processes; Uniform convergence of empirical measures; Convergence in distribution in euclidean spaces; Convergence in distribution in metric spaces; The uniform metric on space of cadlag functions; The skorohod metric on D [0, oo); Central limit teorems; Martingales.


Basics of Probability and Stochastic Processes

Basics of Probability and Stochastic Processes

Author: Esra Bas

Publisher: Springer Nature

Published: 2019-11-05

Total Pages: 303

ISBN-13: 3030323234

DOWNLOAD EBOOK

This textbook explores probability and stochastic processes at a level that does not require any prior knowledge except basic calculus. It presents the fundamental concepts in a step-by-step manner, and offers remarks and warnings for deeper insights. The chapters include basic examples, which are revisited as the new concepts are introduced. To aid learning, figures and diagrams are used to help readers grasp the concepts, and the solutions to the exercises and problems. Further, a table format is also used where relevant for better comparison of the ideas and formulae. The first part of the book introduces readers to the essentials of probability, including combinatorial analysis, conditional probability, and discrete and continuous random variable. The second part then covers fundamental stochastic processes, including point, counting, renewal and regenerative processes, the Poisson process, Markov chains, queuing models and reliability theory. Primarily intended for undergraduate engineering students, it is also useful for graduate-level students wanting to refresh their knowledge of the basics of probability and stochastic processes.


Reconstructing Macroeconomics

Reconstructing Macroeconomics

Author: Masanao Aoki

Publisher: Cambridge University Press

Published: 2007

Total Pages: 282

ISBN-13: 0521831067

DOWNLOAD EBOOK

In this book, the authors reconceptualize existing macroeconomics by treating equilibria as statistical distributions, not as fixed points.


An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling

Author: Howard M. Taylor

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 410

ISBN-13: 1483269272

DOWNLOAD EBOOK

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.


Essentials of Stochastic Processes

Essentials of Stochastic Processes

Author: Richard Durrett

Publisher: Springer

Published: 2016-11-07

Total Pages: 282

ISBN-13: 3319456148

DOWNLOAD EBOOK

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.


Elementary Probability Theory

Elementary Probability Theory

Author: Kai Lai Chung

Publisher: Springer Science & Business Media

Published: 2012-11-12

Total Pages: 411

ISBN-13: 0387215484

DOWNLOAD EBOOK

This book provides an introduction to probability theory and its applications. The emphasis is on essential probabilistic reasoning, which is illustrated with a large number of samples. The fourth edition adds material related to mathematical finance as well as expansions on stable laws and martingales. From the reviews: "Almost thirty years after its first edition, this charming book continues to be an excellent text for teaching and for self study." -- STATISTICAL PAPERS


Combinatorics and Random Matrix Theory

Combinatorics and Random Matrix Theory

Author: Jinho Baik

Publisher: American Mathematical Soc.

Published: 2016-06-22

Total Pages: 478

ISBN-13: 0821848410

DOWNLOAD EBOOK

Over the last fifteen years a variety of problems in combinatorics have been solved in terms of random matrix theory. More precisely, the situation is as follows: the problems at hand are probabilistic in nature and, in an appropriate scaling limit, it turns out that certain key quantities associated with these problems behave statistically like the eigenvalues of a (large) random matrix. Said differently, random matrix theory provides a “stochastic special function theory” for a broad and growing class of problems in combinatorics. The goal of this book is to analyze in detail two key examples of this phenomenon, viz., Ulam's problem for increasing subsequences of random permutations and domino tilings of the Aztec diamond. Other examples are also described along the way, but in less detail. Techniques from many different areas in mathematics are needed to analyze these problems. These areas include combinatorics, probability theory, functional analysis, complex analysis, and the theory of integrable systems. The book is self-contained, and along the way we develop enough of the theory we need from each area that a general reader with, say, two or three years experience in graduate school can learn the subject directly from the text.


Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory

Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory

Author: Roland Speicher

Publisher: American Mathematical Soc.

Published: 1998

Total Pages: 105

ISBN-13: 0821806939

DOWNLOAD EBOOK

Free probability theory, introduced by Voiculescu, has developed very actively in the last few years and has had an increasing impact on quite different fields in mathematics and physics. Whereas the subject arose out of the field of von Neumann algebras, presented here is a quite different view of Voiculescu's amalgamated free product. This combinatorial description not only allows re-proving of most of Voiculescu's results in a concise and elegant way, but also opens the way for many new results. Unlike other approaches, this book emphasizes the combinatorial structure of the concept of ``freeness''. This gives an elegant and easily accessible description of freeness and leads to new results in unexpected directions. Specifically, a mathematical framework for otherwise quite ad hoc approximations in physics emerges.


Random Trees

Random Trees

Author: Michael Drmota

Publisher: Springer Science & Business Media

Published: 2009-04-16

Total Pages: 466

ISBN-13: 3211753575

DOWNLOAD EBOOK

The aim of this book is to provide a thorough introduction to various aspects of trees in random settings and a systematic treatment of the mathematical analysis techniques involved. It should serve as a reference book as well as a basis for future research.