Combinatorial and Additive Number Theory V

Combinatorial and Additive Number Theory V

Author: Melvyn B. Nathanson

Publisher: Springer Nature

Published: 2023-01-01

Total Pages: 290

ISBN-13: 3031107969

DOWNLOAD EBOOK

This proceedings volume, the fifth in a series from the Combinatorial and Additive Number Theory (CANT) conferences, is based on talks from the 19th annual workshop, held online due to the COVID-19 pandemic. Organized every year since 2003 by the New York Number Theory Seminar at the CUNY Graduate Center, the workshops survey state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. The CANT 2021 meeting featured over a hundred speakers from North and South America, Europe, Asia, Australia, and New Zealand, and was the largest CANT conference in terms of the number of both lectures and participants. These proceedings contain peer-reviewed and edited papers on current topics in number theory. Topics featured in this volume include sumsets, minimal bases, Sidon sets, analytic and prime number theory, combinatorial and discrete geometry, numerical semigroups, and a survey of expansion, divisibility, and parity. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.


Combinatorial and Additive Number Theory

Combinatorial and Additive Number Theory

Author: Melvyn B. Nathanson

Publisher: Springer

Published: 2014-10-18

Total Pages: 309

ISBN-13: 1493916017

DOWNLOAD EBOOK

This proceedings volume is based on papers presented at the Workshops on Combinatorial and Additive Number Theory (CANT), which were held at the Graduate Center of the City University of New York in 2011 and 2012. The goal of the workshops is to survey recent progress in combinatorial number theory and related parts of mathematics. The workshop attracts researchers and students who discuss the state-of-the-art, open problems and future challenges in number theory.


Combinatorial and Additive Number Theory III

Combinatorial and Additive Number Theory III

Author: Melvyn B. Nathanson

Publisher: Springer Nature

Published: 2019-12-10

Total Pages: 237

ISBN-13: 3030311066

DOWNLOAD EBOOK

Based on talks from the 2017 and 2018 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 17 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, commutative algebra and discrete geometry, and applications of logic and nonstandard analysis to number theory. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.


Combinatorial and Additive Number Theory IV

Combinatorial and Additive Number Theory IV

Author: Melvyn B. Nathanson

Publisher: Springer Nature

Published: 2021-08-12

Total Pages: 445

ISBN-13: 3030679969

DOWNLOAD EBOOK

This is the fourth in a series of proceedings of the Combinatorial and Additive Number Theory (CANT) conferences, based on talks from the 2019 and 2020 workshops at the City University of New York. The latter was held online due to the COVID-19 pandemic, and featured speakers from North and South America, Europe, and Asia. The 2020 Zoom conference was the largest CANT conference in terms of the number of both lectures and participants. These proceedings contain 25 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003 at the CUNY Graduate Center, the workshop surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, zero-sum sequences, minimal complements, analytic and prime number theory, Hausdorff dimension, combinatorial and discrete geometry, and Ramsey theory. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.


Combinatorial and Additive Number Theory II

Combinatorial and Additive Number Theory II

Author: Melvyn B. Nathanson

Publisher: Springer

Published: 2018-01-13

Total Pages: 309

ISBN-13: 3319680323

DOWNLOAD EBOOK

Based on talks from the 2015 and 2016 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 19 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, primality testing, and cryptography are among the topics featured in this volume. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. Researchers and graduate students interested in the current progress in number theory will find this selection of articles relevant and compelling.


Combinatorial Number Theory

Combinatorial Number Theory

Author: Bruce M. Landman

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2024-11-04

Total Pages: 364

ISBN-13: 3111395626

DOWNLOAD EBOOK

This volume consists of twenty articles stemming from presentations given at the 2023 Integers Conference. They represent a variety of active areas of research in combinatorial number theory, including additive number theory, multiplicative number theory, elementary number theory, the theory of partitions, Ramsey theory, sequences, algebraic combinatorics, enumerative combinatorics, and Diophantine equations.


Combinatorial Number Theory and Additive Group Theory

Combinatorial Number Theory and Additive Group Theory

Author: Alfred Geroldinger

Publisher: Springer Science & Business Media

Published: 2009-04-15

Total Pages: 324

ISBN-13: 3764389613

DOWNLOAD EBOOK

Additive combinatorics is a relatively recent term coined to comprehend the developments of the more classical additive number theory, mainly focussed on problems related to the addition of integers. Some classical problems like the Waring problem on the sum of k-th powers or the Goldbach conjecture are genuine examples of the original questions addressed in the area. One of the features of contemporary additive combinatorics is the interplay of a great variety of mathematical techniques, including combinatorics, harmonic analysis, convex geometry, graph theory, probability theory, algebraic geometry or ergodic theory. This book gathers the contributions of many of the leading researchers in the area and is divided into three parts. The two first parts correspond to the material of the main courses delivered, Additive combinatorics and non-unique factorizations, by Alfred Geroldinger, and Sumsets and structure, by Imre Z. Ruzsa. The third part collects the notes of most of the seminars which accompanied the main courses, and which cover a reasonably large part of the methods, techniques and problems of contemporary additive combinatorics.


Nonstandard Analysis for the Working Mathematician

Nonstandard Analysis for the Working Mathematician

Author: Peter A. Loeb

Publisher: Springer

Published: 2015-08-26

Total Pages: 485

ISBN-13: 9401773270

DOWNLOAD EBOOK

Starting with a simple formulation accessible to all mathematicians, this second edition is designed to provide a thorough introduction to nonstandard analysis. Nonstandard analysis is now a well-developed, powerful instrument for solving open problems in almost all disciplines of mathematics; it is often used as a ‘secret weapon’ by those who know the technique. This book illuminates the subject with some of the most striking applications in analysis, topology, functional analysis, probability and stochastic analysis, as well as applications in economics and combinatorial number theory. The first chapter is designed to facilitate the beginner in learning this technique by starting with calculus and basic real analysis. The second chapter provides the reader with the most important tools of nonstandard analysis: the transfer principle, Keisler’s internal definition principle, the spill-over principle, and saturation. The remaining chapters of the book study different fields for applications; each begins with a gentle introduction before then exploring solutions to open problems. All chapters within this second edition have been reworked and updated, with several completely new chapters on compactifications and number theory. Nonstandard Analysis for the Working Mathematician will be accessible to both experts and non-experts, and will ultimately provide many new and helpful insights into the enterprise of mathematics.


Number Theory and Combinatorics

Number Theory and Combinatorics

Author: Bruce M. Landman

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-04-19

Total Pages: 370

ISBN-13: 3110754215

DOWNLOAD EBOOK

Over a career that spanned 60 years, Ronald L. Graham (known to all as Ron) made significant contributions to the fields of discrete mathematics, number theory, Ramsey theory, computational geometry, juggling and magical mathematics, and many more. Ron also was a mentor to generations of mathematicians, he gave countless talks and helped bring mathematics to a wider audience, and he held signifi cant leadership roles in the mathematical community. This volume is dedicated to the life and memory of Ron Graham, and includes 20-articles by leading scientists across a broad range of subjects that refl ect some of the many areas in which Ron worked.


Number Theory

Number Theory

Author: David V. Chudnovsky

Publisher: Springer

Published: 2006-11-14

Total Pages: 263

ISBN-13: 3540466401

DOWNLOAD EBOOK

The New York Number Theory Seminar was organized in 1982 to provide a forum for the presentation and discussion of recent advances in higher arithmetic and its applications. Papers included in this volume are based on the lectures presented by their authors at the Seminar at the Graduate Center of C.U.N.Y. in 1985-88. Papers in the volume cover a wide spectrum of number theoretic topics ranging from additive number theory and diophantine approximations to algebraic number theory and relations with algebraic geometry and topology.