Collisional Line Broadening and Shifting of Atmospheric Gases

Collisional Line Broadening and Shifting of Atmospheric Gases

Author: Jeanna Buldyreva

Publisher: World Scientific

Published: 2011

Total Pages: 306

ISBN-13: 184816596X

DOWNLOAD EBOOK

This book presents a comprehensive overview of the modern theory of spectral line broadening and shifting by pressure of atmospheric gases. It describes current semi-classical methods for calculating vibrotational line widths and shifts, including very recent modifications and new developments realised by the authors themselves. For most of the considered molecular systems, analytical formulae are also given, which enable the calculation of line broadening coefficients without the use of semi-classical methods. The results of calculations by various approaches are compared with experimental data available in the literature. Numerous appendices list theoretical expressions and parameters' values required for the writing of computer programs for calculation of line broadening and line shifting coefficients.The book is addressed to undergraduate and postgraduate students as well as to professional scientists and researchers working in the field of molecular physics, molecular spectroscopy, quantum chemistry and mathematical physics.


High Accuracy Resonator Spectroscopy of Atmospheric Gases at Millimetre and Submillimetre Waves

High Accuracy Resonator Spectroscopy of Atmospheric Gases at Millimetre and Submillimetre Waves

Author: M. Yu. Tretyakov

Publisher: Cambridge Scholars Publishing

Published: 2021-11-12

Total Pages: 425

ISBN-13: 1527577406

DOWNLOAD EBOOK

This book is devoted to the most efficient method of obtaining spectroscopic parameters characterising the absorption of microwave radiation by the Earth’s atmosphere. It explores why this field of science is interesting and important for humanity, and details the basics of gas phase molecular spectroscopy. The book also shows the advantages of the resonator spectroscopy technique for quantitative molecular analysis, and reviews the best-known investigations of diagnostic atmospheric lines and the continuum in the millimetre and submillimetre-wave range. It will appeal to a wide range of specialists in the fields of spectroscopy, atmospheric physics, and millimetre and submillimetre-wave techniques, and will be helpful for lecturers and students concerned with these specialised courses.


Collisional Effects on Molecular Spectra

Collisional Effects on Molecular Spectra

Author: Jean-Michel Hartmann

Publisher: Elsevier

Published: 2021-01-12

Total Pages: 577

ISBN-13: 0128227362

DOWNLOAD EBOOK

Gas phase molecular spectroscopy is a powerful tool for obtaining information on the geometry and internal structure of isolated molecules and their interactions with others. It enables the understanding and description, through measurements and modeling, of the influence of pressure on light absorption, emission, and scattering by gas molecules, which must be taken into account for the correct analysis and prediction of the resulting spectra. Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications, Second Edition provides an updated review of current experimental techniques, theoretical knowledge, and practical applications. After an introduction to collisional effects on molecular spectra, the book moves on by taking a threefold approach: it highlights key models, reviews available data, and discusses the consequences for applications. These include areas such as heat transfer, remote sensing, optical sounding, metrology, probing of gas media, and climate predictions. This second edition also contains, with respect to the first one, significant amounts of new information, including 23 figures, 8 tables, and around 700 references.Drawing on the extensive experience of its expert authors, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications, Second Edition, is a valuable guide for all those involved with sourcing, researching, interpreting, or applying gas phase molecular spectroscopy techniques across a range of fields. - Provides updated information on the latest advances in the field, including isolated line shapes, line-broadening and -shifting, line-mixing, the far wings and associated continua, and collision-induced absorption - Reviews recently developed experimental techniques of high accuracy and sensitivity - Highlights the latest practical applications in areas such as metrology, probing of gas media, and climate prediction


Trace Analysis of Specialty and Electronic Gases

Trace Analysis of Specialty and Electronic Gases

Author: William M. Geiger

Publisher: John Wiley & Sons

Published: 2013-07-15

Total Pages: 309

ISBN-13: 1118642570

DOWNLOAD EBOOK

Explores the latest advances and applications of specialty and electronic gas analysis The semiconductor industry depends upon a broad range of instrumental techniques in order to detect and analyze impurities that may be present in specialty and electronic gases, including permanent gases, water vapor, reaction by-products, and metal species. Trace Analysis of Specialty and Electronic Gases draws together all the latest advances in analytical chemistry, providing researchers with both the theory and the operating principles of the full spectrum of instrumental techniques available for specialty and electronic gas analysis. Moreover, the book details the advantages and disadvantages of each technique, steering readers away from common pitfalls. Featuring contributions from leading analytical and industrial chemists, Trace Analysis of Specialty and Electronic Gases covers a wide range of practical industrial applications. The book begins with the historical development of gas analysis and then focuses on particular subjects or techniques such as: Metals sampling and ICP-MS analysis Improvements in FTIR spectroscopy Water vapor analysis techniques New infrared laser absorption spectroscopy approaches GC/MS, GC/AED, and GC-ICP-MS techniques Gas chromatography columns Atmospheric pressure ionization mass spectrometry Lastly, the book examines gas mixtures and standards that are critical for instrument calibration. There are also two appendices offering information on fittings and material compatibility. With its thorough review of the literature and step-by-step guidance, Trace Analysis of Specialty and Electronic Gases enables researchers to take full advantage of the latest advances in gas analysis. Although the book's focus is the semiconductor and electronics industry, analytical chemists in other industries facing challenges with such issues as detection selectivity and sensitivity, matrix gas interference, and materials compatibility will also discover plenty of useful analytical approaches and techniques.


Laser-based Investigation of Gas and Solid Fuel Combustion under Oxy-Fuel Atmosphere

Laser-based Investigation of Gas and Solid Fuel Combustion under Oxy-Fuel Atmosphere

Author: Sebastian Bürkle

Publisher: BoD – Books on Demand

Published: 2019-03-04

Total Pages: 190

ISBN-13: 3748145144

DOWNLOAD EBOOK

Oxy-fuel combustion has the potential to reduce the atmospheric CO2-emissions of fossil fuel power plants by burning gaseous or solid fuels under an atmosphere of carbon dioxide and oxygen. The combustion under oxy-fuel operating conditions, however, is accompanied by major changes in the combustion behavior. The underlying chemical and physical processes are complex and highly coupled, which impedes investigations and modeling. Since tactile and most of the optical measurement techniques fail under the sensitive and simultaneously harsh environments of oxy-fuel combustion, an optical in-situ measurement system based on tunable diode laser absorption spectroscopy is developed in this work. This system allows to investigate the thermochemical state of combustion gases with respect to the quantitative concentrations of multiple combustion-relevant gases and the gas temperature. In combination with a newly developed and applied measurement strategy, the system even allows for a measurement of the gas residence time distribution. To improve the measurement accuracy, multiple absorption line parameters are experimentally determined. The measurement system is applied to three oxy-fuel combustion systems. First, the thermochemical state of the laminar, non-premixed methane combustion under oxy-fuel atmosphere is studied. The turbulent, premixed combustion of the same fuel under air and two oxy-fuel atmospheres is studied in a 20 kWth swirled combustor. Measurements of the residence time distribution of fluids in the combustion chamber provide insights into mixing and transport properties of the flow. The thermochemical state reveals insights into the reaction progess and flow mixing. Co-firing of three different solid fuels in an assisting gas flame is investigated for a combined thermal power up to 40 kWth. Here, the char burnout of the particles is investigated. The thermochemical state of the combustion of pure torrefied biomass under air and oxy-fuel combustion atmosphere is investigated in a 60 kWth close-to-application facility and compared to equillibrium calculations.


Remote Sensing of the Atmosphere for Environmental Security

Remote Sensing of the Atmosphere for Environmental Security

Author: Agnès Perrin

Publisher: Springer Science & Business Media

Published: 2007-01-21

Total Pages: 347

ISBN-13: 1402050909

DOWNLOAD EBOOK

This volume continues presentation of the proceedings of a NATO Advanced Research Workshop (ARW) held at Rabat, Morocco on the 17-19th of November 2005 entitled Remote Sensing of the Atmosphere for Environmental Security. Coverage includes a review of recent and upcoming experimental satellite measurements of the Earth’s atmosphere, characterisation of pollution in urban areas and the growing lack of water in many countries of the Mediterranean area, and more.


Thermal Radiation Heat Transfer

Thermal Radiation Heat Transfer

Author: John R. Howell

Publisher: CRC Press

Published: 2020-12-10

Total Pages: 967

ISBN-13: 1000257835

DOWNLOAD EBOOK

The seventh edition of this classic text outlines the fundamental physical principles of thermal radiation, as well as analytical and numerical techniques for quantifying radiative transfer between surfaces and within participating media. The textbook includes newly expanded sections on surface properties, electromagnetic theory, scattering and absorption of particles, and near-field radiative transfer, and emphasizes the broader connections to thermodynamic principles. Sections on inverse analysis and Monte Carlo methods have been enhanced and updated to reflect current research developments, along with new material on manufacturing, renewable energy, climate change, building energy efficiency, and biomedical applications. Features: Offers full treatment of radiative transfer and radiation exchange in enclosures. Covers properties of surfaces and gaseous media, and radiative transfer equation development and solutions. Includes expanded coverage of inverse methods, electromagnetic theory, Monte Carlo methods, and scattering and absorption by particles. Features expanded coverage of near-field radiative transfer theory and applications. Discusses electromagnetic wave theory and how it is applied to thermal radiation transfer. This textbook is ideal for Professors and students involved in first-year or advanced graduate courses/modules in Radiative Heat Transfer in engineering programs. In addition, professional engineers, scientists and researchers working in heat transfer, energy engineering, aerospace and nuclear technology will find this an invaluable professional resource. Over 350 surface configuration factors are available online, many with online calculation capability. Online appendices provide information on related areas such as combustion, radiation in porous media, numerical methods, and biographies of important figures in the history of the field. A Solutions Manual is available for instructors adopting the text.


Radiative Transfer in the Atmosphere and Ocean

Radiative Transfer in the Atmosphere and Ocean

Author: Gary E. Thomas

Publisher: Cambridge University Press

Published: 2002-01-28

Total Pages: 554

ISBN-13: 9780521890618

DOWNLOAD EBOOK

Provides a foundation of the theoretical and practical aspects of radiative transfer, for the atmospheric, oceanic and environmental sciences.