Collision Theory and Statistical Theory of Chemical Reactions

Collision Theory and Statistical Theory of Chemical Reactions

Author: S. G. Christov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 336

ISBN-13: 3642931421

DOWNLOAD EBOOK

Since the discovery of quantum mechanics,more than fifty years ago,the theory of chemical reactivity has taken the first steps of its development. The knowledge of the electronic structure and the properties of atoms and molecules is the basis for an un derstanding of their interactions in the elementary act of any chemical process. The increasing information in this field during the last decades has stimulated the elaboration of the methods for evaluating the potential energy of the reacting systems as well as the creation of new methods for calculation of reaction probabili ties (or cross sections) and rate constants. An exact solution to these fundamental problems of theoretical chemistry based on quan tum mechanics and statistical physics, however, is still impossible even for the simplest chemical reactions. Therefore,different ap proximations have to be used in order to simplify one or the other side of the problem. At present, the basic approach in the theory of chemical reactivity consists in separating the motions of electrons and nu clei by making use of the Born-Oppenheimer adiabatic approximation to obtain electronic energy as an effective potential for nuclear motion. If the potential energy surface is known, one can calculate, in principle, the reaction probability for any given initial state of the system. The reaction rate is then obtained as an average of the reaction probabilities over all possible initial states of the reacting ~artic1es. In the different stages of this calculational scheme additional approximations are usually introduced.


Quantum Theory of Chemical Reactions

Quantum Theory of Chemical Reactions

Author: R. Daudel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 249

ISBN-13: 9400995164

DOWNLOAD EBOOK

This treatise is devoted to an analysis of the present state of the quantum theory of chemical reactions. It will be divided into three volumes and will contain the contributions to an international seminar organized by the editors. The first one, is concerned with the fundamental problems which occur when studying a gas phase reaction or a reaction for which the solvent effect is not taken into account. The two first papers show how the collision theory can be used to predict the behaviour of interacting small molecules. For large molecules the complete calculations are not possible. We can only estimate the reaction path by calculating important areas of the potential surfaces. Four papers are concerned with this important pro cess. Furthermore, in one of these, the electronic reorganization which occurs along the reaction path is carefully analyzed. ~~o papers are devoted to the discussion of general rules as aromaticity rules, symmetry rules. The last two papers are concerned with the electrostatic molecular poten tial method which is the modern way of using static indices to establish relations between structure and chemical reactivity. Volume II will be devoted to a detailed analysis of the role of the solvent and volume III will present important applications as reaction mechanisms, photochemistry, catalysis, biochemical reactions and drug design. SOME RECENT DEVELOPMENTS IN THE MOLECULAR TREATMENT OF ATOM-ATOM COLLISIONS.


Dynamical Collision Theory and Its Applications

Dynamical Collision Theory and Its Applications

Author: Sadhan K. Adhikari

Publisher: Academic Press

Published: 1991

Total Pages: 520

ISBN-13:

DOWNLOAD EBOOK

Dynamical Collision Theory and Its Applications reviews some of the powerful methods that have evolved for calculating the predictions of dynamical collision theory. Topics range from scattering theory to potential scattering, three- and four-particle scattering, multiparticle scattering, many-particle Lippmann-Schwinger equations, and the connected-kernel approach. This book is comprised of nine chapters; the first of which introduces the reader to the quantum theory of scattering. This topic is followed by a discussion on two-particle potential scattering and various methods for calculating ...


Atom - Molecule Collision Theory

Atom - Molecule Collision Theory

Author: Richard Barry Bernstein

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 785

ISBN-13: 1461329132

DOWNLOAD EBOOK

The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.


Theories of Molecular Reaction Dynamics

Theories of Molecular Reaction Dynamics

Author: Niels E. Henriksen

Publisher: Oxford University Press

Published: 2018-11-01

Total Pages: 544

ISBN-13: 0192527207

DOWNLOAD EBOOK

This book deals with a central topic at the interface of chemistry and physics—the understanding of how the transformation of matter takes place at the atomic level. Building on the laws of physics, the book focuses on the theoretical framework for predicting the outcome of chemical reactions. The style is highly systematic with attention to basic concepts and clarity of presentation. The emphasis is on concepts and insights obtained via analytical theories rather than computational and numerical aspects. Molecular reaction dynamics is about the detailed atomic-level description of chemical reactions. Based on quantum mechanics and statistical mechanics, the dynamics of uni- and bi-molecular elementary reactions are described. The book features a comprehensive presentation of transition-state theory which plays an important role in practice, and a detailed discussion of basic theories of reaction dynamics in condensed phases. Examples and end-of-chapter problems are included in order to illustrate the theory and its connection to chemical problems. The second edition includes updated descriptions of adiabatic and non-adiabatic electron-nuclear dynamics, an expanded discussion of classical two-body models of chemical reactions, including the Langevin model, additional material on quantum tunnelling and its implementation in Transition-State Theory, and a more thorough description of the Born and Onsager models for solvation.


Quantum Theory of Chemical Reactions

Quantum Theory of Chemical Reactions

Author: R. Daudel

Publisher: Springer

Published: 1979-11-30

Total Pages: 0

ISBN-13: 9789027710475

DOWNLOAD EBOOK

This treatise is devoted to an analysis of the present state of the quantum theory of chemical reactions. It will be divided into three volumes and will contain the contributions to an international seminar organized by the editors. The first one, is concerned with the fundamental problems which occur when studying a gas phase reaction or a reaction for which the solvent effect is not taken into account. The two first papers show how the collision theory can be used to predict the behaviour of interacting small molecules. For large molecules the complete calculations are not possible. We can only estimate the reaction path by calculating important areas of the potential surfaces. Four papers are concerned with this important pro cess. Furthermore, in one of these, the electronic reorganization which occurs along the reaction path is carefully analyzed. ~~o papers are devoted to the discussion of general rules as aromaticity rules, symmetry rules. The last two papers are concerned with the electrostatic molecular poten tial method which is the modern way of using static indices to establish relations between structure and chemical reactivity. Volume II will be devoted to a detailed analysis of the role of the solvent and volume III will present important applications as reaction mechanisms, photochemistry, catalysis, biochemical reactions and drug design. SOME RECENT DEVELOPMENTS IN THE MOLECULAR TREATMENT OF ATOM-ATOM COLLISIONS.