Cognitive Networked Sensing and Big Data

Cognitive Networked Sensing and Big Data

Author: Robert Qiu

Publisher: Springer Science & Business Media

Published: 2013-08-04

Total Pages: 633

ISBN-13: 1461445442

DOWNLOAD EBOOK

Wireless Distributed Computing and Cognitive Sensing defines high-dimensional data processing in the context of wireless distributed computing and cognitive sensing. This book presents the challenges that are unique to this area such as synchronization caused by the high mobility of the nodes. The author will discuss the integration of software defined radio implementation and testbed development. The book will also bridge new research results and contextual reviews. Also the author provides an examination of large cognitive radio network; hardware testbed; distributed sensing; and distributed computing.


Big Data Analytics for Sustainable Computing

Big Data Analytics for Sustainable Computing

Author: Haldorai, Anandakumar

Publisher: IGI Global

Published: 2019-09-20

Total Pages: 285

ISBN-13: 1522597522

DOWNLOAD EBOOK

Big data consists of data sets that are too large and complex for traditional data processing and data management applications. Therefore, to obtain the valuable information within the data, one must use a variety of innovative analytical methods, such as web analytics, machine learning, and network analytics. As the study of big data becomes more popular, there is an urgent demand for studies on high-level computational intelligence and computing services for analyzing this significant area of information science. Big Data Analytics for Sustainable Computing is a collection of innovative research that focuses on new computing and system development issues in emerging sustainable applications. Featuring coverage on a wide range of topics such as data filtering, knowledge engineering, and cognitive analytics, this publication is ideally designed for data scientists, IT specialists, computer science practitioners, computer engineers, academicians, professionals, and students seeking current research on emerging analytical techniques and data processing software.


Big-Data Analytics for Cloud, IoT and Cognitive Computing

Big-Data Analytics for Cloud, IoT and Cognitive Computing

Author: Kai Hwang

Publisher: John Wiley & Sons

Published: 2017-03-17

Total Pages: 432

ISBN-13: 1119247292

DOWNLOAD EBOOK

The definitive guide to successfully integrating social, mobile, Big-Data analytics, cloud and IoT principles and technologies The main goal of this book is to spur the development of effective big-data computing operations on smart clouds that are fully supported by IoT sensing, machine learning and analytics systems. To that end, the authors draw upon their original research and proven track record in the field to describe a practical approach integrating big-data theories, cloud design principles, Internet of Things (IoT) sensing, machine learning, data analytics and Hadoop and Spark programming. Part 1 focuses on data science, the roles of clouds and IoT devices and frameworks for big-data computing. Big data analytics and cognitive machine learning, as well as cloud architecture, IoT and cognitive systems are explored, and mobile cloud-IoT-interaction frameworks are illustrated with concrete system design examples. Part 2 is devoted to the principles of and algorithms for machine learning, data analytics and deep learning in big data applications. Part 3 concentrates on cloud programming software libraries from MapReduce to Hadoop, Spark and TensorFlow and describes business, educational, healthcare and social media applications for those tools. The first book describing a practical approach to integrating social, mobile, analytics, cloud and IoT (SMACT) principles and technologies Covers theory and computing techniques and technologies, making it suitable for use in both computer science and electrical engineering programs Offers an extremely well-informed vision of future intelligent and cognitive computing environments integrating SMACT technologies Fully illustrated throughout with examples, figures and approximately 150 problems to support and reinforce learning Features a companion website with an instructor manual and PowerPoint slides www.wiley.com/go/hwangIOT Big-Data Analytics for Cloud, IoT and Cognitive Computing satisfies the demand among university faculty and students for cutting-edge information on emerging intelligent and cognitive computing systems and technologies. Professionals working in data science, cloud computing and IoT applications will also find this book to be an extremely useful working resource.


Signal Processing and Networking for Big Data Applications

Signal Processing and Networking for Big Data Applications

Author: Zhu Han

Publisher: Cambridge University Press

Published: 2017-04-27

Total Pages: 375

ISBN-13: 1108155944

DOWNLOAD EBOOK

This unique text helps make sense of big data in engineering applications using tools and techniques from signal processing. It presents fundamental signal processing theories and software implementations, reviews current research trends and challenges, and describes the techniques used for analysis, design and optimization. Readers will learn about key theoretical issues such as data modelling and representation, scalable and low-complexity information processing and optimization, tensor and sublinear algorithms, and deep learning and software architecture, and their application to a wide range of engineering scenarios. Applications discussed in detail include wireless networking, smart grid systems, and sensor networks and cloud computing. This is the ideal text for researchers and practising engineers wanting to solve practical problems involving large amounts of data, and for students looking to grasp the fundamentals of big data analytics.


Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks

Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks

Author: Krishna Kant Singh

Publisher: John Wiley & Sons

Published: 2020-07-08

Total Pages: 272

ISBN-13: 1119640369

DOWNLOAD EBOOK

Communication and network technology has witnessed recent rapid development and numerous information services and applications have been developed globally. These technologies have high impact on society and the way people are leading their lives. The advancement in technology has undoubtedly improved the quality of service and user experience yet a lot needs to be still done. Some areas that still need improvement include seamless wide-area coverage, high-capacity hot-spots, low-power massive-connections, low-latency and high-reliability and so on. Thus, it is highly desirable to develop smart technologies for communication to improve the overall services and management of wireless communication. Machine learning and cognitive computing have converged to give some groundbreaking solutions for smart machines. With these two technologies coming together, the machines can acquire the ability to reason similar to the human brain. The research area of machine learning and cognitive computing cover many fields like psychology, biology, signal processing, physics, information theory, mathematics, and statistics that can be used effectively for topology management. Therefore, the utilization of machine learning techniques like data analytics and cognitive power will lead to better performance of communication and wireless systems.


Cognitive Analytics: Concepts, Methodologies, Tools, and Applications

Cognitive Analytics: Concepts, Methodologies, Tools, and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2020-03-06

Total Pages: 1961

ISBN-13: 1799824616

DOWNLOAD EBOOK

Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries, including business and healthcare. It is necessary to develop specific software programs that can analyze and interpret large amounts of data quickly in order to ensure adequate usage and predictive results. Cognitive Analytics: Concepts, Methodologies, Tools, and Applications provides emerging perspectives on the theoretical and practical aspects of data analysis tools and techniques. It also examines the incorporation of pattern management as well as decision-making and prediction processes through the use of data management and analysis. Highlighting a range of topics such as natural language processing, big data, and pattern recognition, this multi-volume book is ideally designed for information technology professionals, software developers, data analysts, graduate-level students, researchers, computer engineers, software engineers, IT specialists, and academicians.


Mechatronics Engineering and Electrical Engineering

Mechatronics Engineering and Electrical Engineering

Author: Ai Sheng

Publisher: CRC Press

Published: 2015-04-28

Total Pages: 410

ISBN-13: 131573446X

DOWNLOAD EBOOK

The 2014 International Conference on Mechatronics Engineering and Electrical Engineering (CMEEE2014) was held October 18-19, 2014 in Sanya, Hainan, China. CMEEE2014 provided a valuable opportunity for researchers, scholars and scientists to exchange their new ideas and application experiences face to face together, to establish business or research


Collaborative Computing: Networking, Applications and Worksharing

Collaborative Computing: Networking, Applications and Worksharing

Author: Xinheng Wang

Publisher: Springer

Published: 2019-08-18

Total Pages: 830

ISBN-13: 303030146X

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed proceedings of the 15th International Conference on Collaborative Computing: Networking, Applications, and Worksharing, CollaborateCom 2019, held in London, UK, in August 2019. The 40 full papers, 8 short papers and 6 workshop presented were carefully reviewed and selected from 121 submissions. The papers reflect the conference sessions as follows: cloud, IoT and edge computing, collaborative IoT services and applications, artificial intelligence, software development, teleportation protocol and entanglement swapping, network based on the neural network, scheme based on blockchain and zero-knowledge proof in vehicle networking, software development.


Big Data of Complex Networks

Big Data of Complex Networks

Author: Matthias Dehmer

Publisher: CRC Press

Published: 2016-08-19

Total Pages: 290

ISBN-13: 1315353598

DOWNLOAD EBOOK

Big Data of Complex Networks presents and explains the methods from the study of big data that can be used in analysing massive structural data sets, including both very large networks and sets of graphs. As well as applying statistical analysis techniques like sampling and bootstrapping in an interdisciplinary manner to produce novel techniques for analyzing massive amounts of data, this book also explores the possibilities offered by the special aspects such as computer memory in investigating large sets of complex networks. Intended for computer scientists, statisticians and mathematicians interested in the big data and networks, Big Data of Complex Networks is also a valuable tool for researchers in the fields of visualization, data analysis, computer vision and bioinformatics. Key features: Provides a complete discussion of both the hardware and software used to organize big data Describes a wide range of useful applications for managing big data and resultant data sets Maintains a firm focus on massive data and large networks Unveils innovative techniques to help readers handle big data Matthias Dehmer received his PhD in computer science from the Darmstadt University of Technology, Germany. Currently, he is Professor at UMIT – The Health and Life Sciences University, Austria, and the Universität der Bundeswehr München. His research interests are in graph theory, data science, complex networks, complexity, statistics and information theory. Frank Emmert-Streib received his PhD in theoretical physics from the University of Bremen, and is currently Associate professor at Tampere University of Technology, Finland. His research interests are in the field of computational biology, machine learning and network medicine. Stefan Pickl holds a PhD in mathematics from the Darmstadt University of Technology, and is currently a Professor at Bundeswehr Universität München. His research interests are in operations research, systems biology, graph theory and discrete optimization. Andreas Holzinger received his PhD in cognitive science from Graz University and his habilitation (second PhD) in computer science from Graz University of Technology. He is head of the Holzinger Group HCI-KDD at the Medical University Graz and Visiting Professor for Machine Learning in Health Informatics Vienna University of Technology.