Coding and Iterative Detection for Magnetic Recording Channels

Coding and Iterative Detection for Magnetic Recording Channels

Author: Zining Wu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 165

ISBN-13: 146154565X

DOWNLOAD EBOOK

The advent of the internet age has produced enormous demand for in creased storage capacity and for the consequent increases in the amount of information that can be stored in a small space. While physical and media improvements have driven the majority of improvement in modern storage systems, signal processing and coding methods have increasing ly been used to augment those improvements. Run-length-limited codes and partial-response detection methods have come to be the norm in an industry that once rejected any sophistication in the read or write pro cessing circuits. VLSI advances now enable increasingly sophisticated signal processing methods for negligible cost and complexity, a trend sure to continue even as disk access speeds progress to billions of bits per second and terabits per square inch in the new millennium of the in formation age. This new book representing the Ph. D. dissertation work of Stanford's recent graduate Dr. Zining Wu is an up-to-date and fo cused review of the area that should be of value to those just starting in this area and as well those with considerable expertise. The use of saturation recording, i. e. the mandated restriction of two-level inputs, creates interesting twists on the use of communica tion/transmission methods in recording.


Coding and Iterative Detection for Magnetic Recording Channels

Coding and Iterative Detection for Magnetic Recording Channels

Author: Zining Wu

Publisher: Springer

Published: 2011-09-27

Total Pages: 152

ISBN-13: 9781461545668

DOWNLOAD EBOOK

The advent of the internet age has produced enormous demand for in creased storage capacity and for the consequent increases in the amount of information that can be stored in a small space. While physical and media improvements have driven the majority of improvement in modern storage systems, signal processing and coding methods have increasing ly been used to augment those improvements. Run-length-limited codes and partial-response detection methods have come to be the norm in an industry that once rejected any sophistication in the read or write pro cessing circuits. VLSI advances now enable increasingly sophisticated signal processing methods for negligible cost and complexity, a trend sure to continue even as disk access speeds progress to billions of bits per second and terabits per square inch in the new millennium of the in formation age. This new book representing the Ph. D. dissertation work of Stanford's recent graduate Dr. Zining Wu is an up-to-date and fo cused review of the area that should be of value to those just starting in this area and as well those with considerable expertise. The use of saturation recording, i. e. the mandated restriction of two-level inputs, creates interesting twists on the use of communica tion/transmission methods in recording.


Constrained Coding and Soft Iterative Decoding

Constrained Coding and Soft Iterative Decoding

Author: John L. Fan

Publisher: Springer Science & Business Media

Published: 2001-08-31

Total Pages: 284

ISBN-13: 9780792374558

DOWNLOAD EBOOK

Constrained Coding and Soft Iterative Decoding is the first work to combine the issues of constrained coding and soft iterative decoding (e.g., turbo and LDPC codes) from a unified point of view. Since constrained coding is widely used in magnetic and optical storage, it is necessary to use some special techniques (modified concatenation scheme or bit insertion) in order to apply soft iterative decoding. Recent breakthroughs in the design and decoding of error-control codes (ECCs) show significant potential for improving the performance of many communications systems. ECCs such as turbo codes and low-density parity check (LDPC) codes can be represented by graphs and decoded by passing probabilistic (a.k.a. `soft') messages along the edges of the graph. This message-passing algorithm yields powerful decoders whose performance can approach the theoretical limits on capacity. This exposition uses `normal graphs,' introduced by Forney, which extend in a natural manner to block diagram representations of the system and provide a simple unified framework for the decoding of ECCs, constrained codes, and channels with memory. Soft iterative decoding is illustrated by the application of turbo codes and LDPC codes to magnetic recording channels. For magnetic and optical storage, an issue arises in the use of constrained coding, which places restrictions on the sequences that can be transmitted through the channel; the use of constrained coding in combination with soft ECC decoders is addressed by the modified concatenation scheme also known as `reverse concatenation.' Moreover, a soft constraint decoder yields additional coding gain from the redundancy in the constraint, which may be of practical interest in the case of optical storage. In addition, this monograph presents several other research results (including the design of sliding-block lossless compression codes, and the decoding of array codes as LDPC codes). Constrained Coding and Soft Iterative Decoding will prove useful to students, researchers and professional engineers who are interested in understanding this new soft iterative decoding paradigm and applying it in communications and storage systems.


Coding and Signal Processing for Magnetic Recording Systems

Coding and Signal Processing for Magnetic Recording Systems

Author: Bane Vasic

Publisher: CRC Press

Published: 2004-11-09

Total Pages: 742

ISBN-13: 0203490312

DOWNLOAD EBOOK

Implementing new architectures and designs for the magnetic recording read channel have been pushed to the limits of modern integrated circuit manufacturing technology. This book reviews advanced coding and signal processing techniques and architectures for magnetic recording systems. Beginning with the basic principles, it examines read/write operations, data organization, head positioning, sensing, timing recovery, data detection, and error correction. It also provides an in-depth treatment of all recording channel subsystems inside a read channel and hard disk drive controller. The final section reviews new trends in coding, particularly emerging codes for recording channels.


Turbo Code Applications

Turbo Code Applications

Author: Keattisak Sripimanwat

Publisher: Springer Science & Business Media

Published: 2006-02-23

Total Pages: 393

ISBN-13: 140203685X

DOWNLOAD EBOOK

Turbo Code Applications: a journey from a paper to realization presents c- temporary applications of turbo codes in thirteen technical chapters. Each chapter focuses on a particular communication technology utilizing turbo codes, and they are written by experts who have been working in related th areas from around the world. This book is published to celebrate the 10 year anniversary of turbo codes invention by Claude Berrou Alain Glavieux and Punya Thitimajshima (1993-2003). As known for more than a decade, turbo code is the astonishing error control coding scheme which its perf- mance closes to the Shannon’s limit. It has been honored consequently as one of the seventeen great innovations during the ?rst ?fty years of information theory foundation. With the amazing performance compared to that of other existing codes, turbo codes have been adopted into many communication s- tems and incorporated with various modern industrial standards. Numerous research works have been reported from universities and advance companies worldwide. Evidently, it has successfully revolutionized the digital commu- cations. Turbo code and its successors have been applied in most communications startingfromthegroundorterrestrialsystemsofdatastorage,ADSLmodem, and ?ber optic communications. Subsequently, it moves up to the air channel applications by employing to wireless communication systems, and then ?ies up to the space by using in digital video broadcasting and satellite com- nications. Undoubtedly, with the excellent error correction potential, it has been selected to support data transmission in space exploring system as well.


Memory Mass Storage

Memory Mass Storage

Author: Giovanni Campardo

Publisher: Springer Science & Business Media

Published: 2011-02-04

Total Pages: 498

ISBN-13: 3642147526

DOWNLOAD EBOOK

Memory Mass Storage describes the fundamental storage technologies, like Semiconductor, Magnetic, Optical and Uncommon, detailing the main technical characteristics of the storage devices. It deals not only with semiconductor and hard disk memory, but also with different ways to manufacture and assembly them, and with their application to meet market requirements. It also provides an introduction to the epistemological issues arising in defining the process of remembering, as well as an overview on human memory, and an interesting excursus about biological memories and their organization, to better understand how the best memory we have, our brain, is able to imagine and design memory.


Advanced Error Control Techniques for Data Storage Systems

Advanced Error Control Techniques for Data Storage Systems

Author: Erozan M. Kurtas

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 288

ISBN-13: 1420036491

DOWNLOAD EBOOK

With the massive amount of data produced and stored each year, reliable storage and retrieval of information is more crucial than ever. Robust coding and decoding techniques are critical for correcting errors and maintaining data integrity. Comprising chapters thoughtfully selected from the highly popular Coding and Signal Processing for Magnetic Recording Systems, Advanced Error Control Techniques for Data Storage Systems is a finely focused reference to the state-of-the-art error control and modulation techniques used in storage devices. The book begins with an introduction to error control codes, explaining the theory and basic concepts underlying the codes. Building on these concepts, the discussion turns to modulation codes, paying special attention to run-length limited sequences, followed by maximum transition run (MTR) and spectrum shaping codes. It examines the relationship between constrained codes and error control and correction systems from both code-design and architectural perspectives as well as techniques based on convolution codes. With a focus on increasing data density, the book also explores multi-track systems, soft decision decoding, and iteratively decodable codes such as Low-Density Parity-Check (LDPC) Codes, Turbo codes, and Turbo Product Codes. Advanced Error Control Techniques for Data Storage Systems offers a comprehensive collection of theory and techniques that is ideal for specialists working in the field of data storage systems.