Codes and Curves

Codes and Curves

Author: Judy L. Walker

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 82

ISBN-13: 082182628X

DOWNLOAD EBOOK

Algebraic geometry is introduced, with particular attention given to projective curves, rational functions and divisors. The construction of algebraic geometric codes is given, and the Tsfasman-Vladut-Zink result mentioned above it discussed."--BOOK JACKET.


Codes on Algebraic Curves

Codes on Algebraic Curves

Author: Serguei A. Stepanov

Publisher: Springer Science & Business Media

Published: 1999-07-31

Total Pages: 372

ISBN-13: 9780306461446

DOWNLOAD EBOOK

This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.


Algebraic Codes for Data Transmission

Algebraic Codes for Data Transmission

Author: Richard E. Blahut

Publisher: Cambridge University Press

Published: 2003-02-06

Total Pages: 617

ISBN-13: 1139435078

DOWNLOAD EBOOK

The need to transmit and store massive amounts of data reliably and without error is a vital part of modern communications systems. Error-correcting codes play a fundamental role in minimising data corruption caused by defects such as noise, interference, crosstalk and packet loss. This book provides an accessible introduction to the basic elements of algebraic codes, and discusses their use in a variety of applications. The author describes a range of important coding techniques, including Reed-Solomon codes, BCH codes, trellis codes, and turbocodes. Throughout the book, mathematical theory is illustrated by reference to many practical examples. The book was first published in 2003 and is aimed at graduate students of electrical and computer engineering, and at practising engineers whose work involves communications or signal processing.


Algebraic Curves and Their Applications

Algebraic Curves and Their Applications

Author: Lubjana Beshaj

Publisher: American Mathematical Soc.

Published: 2019-02-26

Total Pages: 358

ISBN-13: 1470442477

DOWNLOAD EBOOK

This volume contains a collection of papers on algebraic curves and their applications. While algebraic curves traditionally have provided a path toward modern algebraic geometry, they also provide many applications in number theory, computer security and cryptography, coding theory, differential equations, and more. Papers cover topics such as the rational torsion points of elliptic curves, arithmetic statistics in the moduli space of curves, combinatorial descriptions of semistable hyperelliptic curves over local fields, heights on weighted projective spaces, automorphism groups of curves, hyperelliptic curves, dessins d'enfants, applications to Painlevé equations, descent on real algebraic varieties, quadratic residue codes based on hyperelliptic curves, and Abelian varieties and cryptography. This book will be a valuable resource for people interested in algebraic curves and their connections to other branches of mathematics.


Codes, Cryptology and Curves with Computer Algebra

Codes, Cryptology and Curves with Computer Algebra

Author: Ruud Pellikaan

Publisher: Cambridge University Press

Published: 2017-11-02

Total Pages: 612

ISBN-13: 1108547826

DOWNLOAD EBOOK

This well-balanced text touches on theoretical and applied aspects of protecting digital data. The reader is provided with the basic theory and is then shown deeper fascinating detail, including the current state of the art. Readers will soon become familiar with methods of protecting digital data while it is transmitted, as well as while the data is being stored. Both basic and advanced error-correcting codes are introduced together with numerous results on their parameters and properties. The authors explain how to apply these codes to symmetric and public key cryptosystems and secret sharing. Interesting approaches based on polynomial systems solving are applied to cryptography and decoding codes. Computer algebra systems are also used to provide an understanding of how objects introduced in the book are constructed, and how their properties can be examined. This book is designed for Masters-level students studying mathematics, computer science, electrical engineering or physics.


Advances In Algebraic Geometry Codes

Advances In Algebraic Geometry Codes

Author: Edgar Martinez-moro

Publisher: World Scientific

Published: 2008-10-08

Total Pages: 453

ISBN-13: 9814471615

DOWNLOAD EBOOK

Advances in Algebraic Geometry Codes presents the most successful applications of algebraic geometry to the field of error-correcting codes, which are used in the industry when one sends information through a noisy channel. The noise in a channel is the corruption of a part of the information due to either interferences in the telecommunications or degradation of the information-storing support (for instance, compact disc). An error-correcting code thus adds extra information to the message to be transmitted with the aim of recovering the sent information. With contributions from renowned researchers, this pioneering book will be of value to mathematicians, computer scientists, and engineers in information theory.


Algebraic Curves in Cryptography

Algebraic Curves in Cryptography

Author: San Ling

Publisher: CRC Press

Published: 2013-06-13

Total Pages: 340

ISBN-13: 1420079476

DOWNLOAD EBOOK

The reach of algebraic curves in cryptography goes far beyond elliptic curve or public key cryptography yet these other application areas have not been systematically covered in the literature. Addressing this gap, Algebraic Curves in Cryptography explores the rich uses of algebraic curves in a range of cryptographic applications, such as secret sh


Algebraic Curves over a Finite Field

Algebraic Curves over a Finite Field

Author: J. W. P. Hirschfeld

Publisher: Princeton University Press

Published: 2013-03-25

Total Pages: 717

ISBN-13: 1400847419

DOWNLOAD EBOOK

This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.


Algebraic Function Fields and Codes

Algebraic Function Fields and Codes

Author: Henning Stichtenoth

Publisher: Springer Science & Business Media

Published: 2009-02-11

Total Pages: 360

ISBN-13: 3540768785

DOWNLOAD EBOOK

This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.


Algebraic Curves Over Finite Fields

Algebraic Curves Over Finite Fields

Author: Carlos Moreno

Publisher: Cambridge University Press

Published: 1993-10-14

Total Pages: 264

ISBN-13: 9780521459013

DOWNLOAD EBOOK

Develops the theory of algebraic curves over finite fields, their zeta and L-functions and the theory of algebraic geometric Goppa codes.