This major revision of Berstel and Perrin's classic Theory of Codes has been rewritten with a more modern focus and a much broader coverage of the subject. The concept of unambiguous automata, which is intimately linked with that of codes, now plays a significant role throughout the book, reflecting developments of the last 20 years. This is complemented by a discussion of the connection between codes and automata, and new material from the field of symbolic dynamics. The authors have also explored links with more practical applications, including data compression and cryptography. The treatment remains self-contained: there is background material on discrete mathematics, algebra and theoretical computer science. The wealth of exercises and examples make it ideal for self-study or courses. In summary, this is a comprehensive reference on the theory of variable-length codes and their relation to automata.
All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.
This Third Edition, in response to the enthusiastic reception given by academia and students to the previous edition, offers a cohesive presentation of all aspects of theoretical computer science, namely automata, formal languages, computability, and complexity. Besides, it includes coverage of mathematical preliminaries. NEW TO THIS EDITION • Expanded sections on pigeonhole principle and the principle of induction (both in Chapter 2) • A rigorous proof of Kleene’s theorem (Chapter 5) • Major changes in the chapter on Turing machines (TMs) – A new section on high-level description of TMs – Techniques for the construction of TMs – Multitape TM and nondeterministic TM • A new chapter (Chapter 10) on decidability and recursively enumerable languages • A new chapter (Chapter 12) on complexity theory and NP-complete problems • A section on quantum computation in Chapter 12. • KEY FEATURES • Objective-type questions in each chapter—with answers provided at the end of the book. • Eighty-three additional solved examples—added as Supplementary Examples in each chapter. • Detailed solutions at the end of the book to chapter-end exercises. The book is designed to meet the needs of the undergraduate and postgraduate students of computer science and engineering as well as those of the students offering courses in computer applications.
Recent applications to biomolecular science and DNA computing have created a new audience for automata theory and formal languages. This is the only introductory book to cover such applications. It begins with a clear and readily understood exposition of the fundamentals that assumes only a background in discrete mathematics. The first five chapters give a gentle but rigorous coverage of basic ideas as well as topics not found in other texts at this level, including codes, retracts and semiretracts. Chapter 6 introduces combinatorics on words and uses it to describe a visually inspired approach to languages. The final chapter explains recently-developed language theory coming from developments in bioscience and DNA computing. With over 350 exercises (for which solutions are available), many examples and illustrations, this text will make an ideal contemporary introduction for students; others, new to the field, will welcome it for self-learning.
Automata and natural language theory are topics lying at the heart of computer science. Both are linked to computational complexity and together, these disciplines help define the parameters of what constitutes a computer, the structure of programs, which problems are solvable by computers, and a range of other crucial aspects of the practice of computer science. In this important volume, two respected authors/editors in the field offer accessible, practice-oriented coverage of these issues with an emphasis on refining core problem solving skills.
For upper level courses on Automata. Combining classic theory with unique applications, this crisp narrative is supported by abundant examples and clarifies key concepts by introducing important uses of techniques in real systems. Broad-ranging coverage allows instructors to easily customise course material to fit their unique requirements.
Automata theory lies at the foundation of computer science, and is vital to a theoretical understanding of how computers work and what constitutes formal methods. This treatise gives a rigorous account of the topic and illuminates its real meaning by looking at the subject in a variety of ways. The first part of the book is organised around notions of rationality and recognisability. The second part deals with relations between words realised by finite automata, which not only exemplifies the automata theory but also illustrates the variety of its methods and its fields of application. Many exercises are included, ranging from those that test the reader, to those that are technical results, to those that extend ideas presented in the text. Solutions or answers to many of these are included in the book.
These are my lecture notes from CS381/481: Automata and Computability Theory, a one-semester senior-level course I have taught at Cornell Uni versity for many years. I took this course myself in thc fall of 1974 as a first-year Ph.D. student at Cornell from Juris Hartmanis and have been in love with the subject ever sin,:e. The course is required for computer science majors at Cornell. It exists in two forms: CS481, an honors version; and CS381, a somewhat gentler paced version. The syllabus is roughly the same, but CS481 go es deeper into thc subject, covers more material, and is taught at a more abstract level. Students are encouraged to start off in one or the other, then switch within the first few weeks if they find the other version more suitaLle to their level of mathematical skill. The purpose of t.hc course is twofold: to introduce computer science students to the rieh heritage of models and abstractions that have arisen over the years; and to dew!c'p the capacity to form abstractions of their own and reason in terms of them.
This book presents an extensive survey and report of related research on important developments in cellular automata (CA) theory. The authors introduce you to this theory in a comprehensive manner that will help you understand the basics of CA and be prepared for further research. They illustrate the matrix algebraic tools that characterize group CA and help develop its applications in the field of VLSI testing. The text examines schemes based on easily testable FSM, bit-error correcting code, byte error correcting code, and characterization of 2D cellular automata. In addition, it looks into CA-based universal pattern generation, data encryption, and synthesis of easily testable combinational logic. The book covers new characterizations of group CA behavior, CA-based tools for fault diagnosis, and a wide variety of applications to solve real-life problems.