Multiscale Modeling of Particle Interactions

Multiscale Modeling of Particle Interactions

Author: Michael King

Publisher: John Wiley & Sons

Published: 2010-03-30

Total Pages: 398

ISBN-13: 047057982X

DOWNLOAD EBOOK

Discover how the latest computational tools are building our understanding of particle interactions and leading to new applications With this book as their guide, readers will gain a new appreciation of the critical role that particle interactions play in advancing research and developing new applications in the biological sciences, chemical engineering, toxicology, medicine, and manufacturing technology The book explores particles ranging in size from cations to whole cells to tissues and processed materials. A focus on recreating complex, real-world dynamical systems helps readers gain a deeper understanding of cell and tissue mechanics, theoretical aspects of multiscale modeling, and the latest applications in biology and nanotechnology. Following an introductory chapter, Multiscale Modeling of Particle Interactions is divided into two parts: Part I, Applications in Nanotechnology, covers: Multiscale modeling of nanoscale aggregation phenomena: applications in semiconductor materials processing Multiscale modeling of rare events in self-assembled systems Continuum description of atomic sheets Coulombic dragging and mechanical propelling of molecules in nanofluidic systems Molecular dynamics modeling of nanodroplets and nanoparticles Modeling the interactions between compliant microcapsules and patterned surfaces Part II, Applications in Biology, covers: Coarse-grained and multiscale simulations of lipid bilayers Stochastic approach to biochemical kinetics In silico modeling of angiogenesis at multiple scales Large-scale simulation of blood flow in microvessels Molecular to multicellular deformation during adhesion of immune cells under flow Each article was contributed by one or more leading experts and pioneers in the field. All readers, from chemists and biologists to engineers and students, will gain new insights into how the latest tools in computational science can improve our understanding of particle interactions and support the development of novel applications across the broad spectrum of disciplines in biology and nanotechnology.


Coarse-Grained Modeling of Biomolecules

Coarse-Grained Modeling of Biomolecules

Author: Garegin A. Papoian

Publisher: CRC Press

Published: 2017-10-30

Total Pages: 399

ISBN-13: 1315356708

DOWNLOAD EBOOK

"The chapters in this book survey the progress in simulating biomolecular dynamics.... The images conjured up by this work are not yet universally loved, but are beginning to bring new insights into the study of biological structure and function. The future will decide whether this scientific movement can bring forth its Picasso or Modigliani." –from the Foreword by Peter G. Wolynes, Bullard-Welch Foundation Professor of Science, Rice University This book highlights the state-of-art in coarse-grained modeling of biomolecules, covering both fundamentals as well as various cutting edge applications. Coarse-graining of biomolecules is an area of rapid advances, with numerous new force fields having appeared recently and significant progress made in developing a systematic theory of coarse-graining. The contents start with first fundamental principles based on physics, then survey specific state-of-art coarse-grained force fields of proteins and nucleic acids, and provide examples of exciting biological problems that are at large scale, and hence, only amenable to coarse-grained modeling. Introduces coarse-grained models of proteins and nucleic acids. Showcases applications such as genome packaging in nuclei and understanding ribosome dynamics Gives the physical foundations of coarse-graining Demonstrates use of models for large-scale assemblies in modern studies Garegin A. Papoian is the first Monroe Martin Associate Professor with appointments in the Department of Chemistry and Biochemistry and the Institute for Physical Science and Technology at the University of Maryland.


Simulations in Nanobiotechnology

Simulations in Nanobiotechnology

Author: Kilho Eom

Publisher: CRC Press

Published: 2011-10-19

Total Pages: 564

ISBN-13: 1439835047

DOWNLOAD EBOOK

Until the late 20th century, computational studies of biomolecules and nanomaterials had considered the two subjects separately. A thorough presentation of state-of-the-art simulations for studying the nanoscale behavior of materials, Simulations in Nanobiotechnology discusses computational simulations of biomolecules and nanomaterials together. The book gives readers insight into not only the fundamentals of simulation-based characterizations in nanobiotechnology, but also in how to approach new and interesting problems in nanobiotechnology using basic theoretical and computational frameworks. Presenting the simulation-based nanoscale characterizations in biological science, Part 1: Describes recent efforts in MD simulation-based characterization and CG modeling of DNA and protein transport dynamics in the nanopore and nanochannel Presents recent advances made in continuum mechanics-based modeling of membrane proteins Summarizes theoretical frameworks along with atomistic simulations in single-molecule mechanics Provides the computational simulation-based mechanical characterization of protein materials Discussing advances in modeling techniques and their applications, Part 2: Describes advances in nature-inspired material design; atomistic simulation-based characterization of nanoparticles’ optical properties; and nanoparticle-based applications in therapeutics Overviews of the recent advances made in experiment and simulation-based characterizations of nanoscale adhesive properties Suggests theoretical frameworks with experimental efforts in the development of nanoresonators for future nanoscale device designs Delineates advances in theoretical and computational methods for understanding the mechanical behavior of a graphene monolayer The development of experimental apparatuses has paved the way to observing physics at the nanoscale and opened a new avenue in the fundamental understanding of the physics of various objects such as biological materials and nanomaterials. With expert contributors from around the world, this book addresses topics such as the molecular dynamics of protein translocation, coarse-grained modeling of CNT-DNA interactions, multi-scale modeling of nanowire resonator sensors, and the molecular dynamics simulation of protein mechanics. It demonstrates the broad application of models and simulations that require the use of principles from multiple academic disciplines.


Molecular Materials with Specific Interactions - Modeling and Design

Molecular Materials with Specific Interactions - Modeling and Design

Author: W. Andrzej Sokalski

Publisher: Springer Science & Business Media

Published: 2007-05-06

Total Pages: 597

ISBN-13: 140205372X

DOWNLOAD EBOOK

Design of new molecular materials is emerging as a new interdisciplinary research field. Corresponding reports are scattered in literature, and this book constitutes one of the first attempts to overview ongoing research efforts. It provides basic information, as well as the details of theory and examples of its application, to experimentalists and theoreticians interested in modeling molecular properties and putting into practice rational design of new materials.


Modeling the Structure, Dynamics, and Interactions of Biological Molecules

Modeling the Structure, Dynamics, and Interactions of Biological Molecules

Author: Zhen Xia

Publisher:

Published: 2013

Total Pages: 378

ISBN-13:

DOWNLOAD EBOOK

Biological molecules are essential parts of organisms and participate in a variety of biological processes within cells. Understanding the relationship between sequence, structure, and function of biological molecules are of fundamental importance in life science and the health care industry. In this dissertation, a multi-scale approach was utilized to develop coarse-grained molecular models for protein and RNA simulations. By simplifying the atomistic representation of a biomolecular system, the coarse-grained approach enables the molecular dynamics simulations to reveal the biological processes, which occur on the time and length scales that are inaccessible to the all-atom models. For RNA, an "intermediate" coarse-grained model was proposed to provide both accuracy and efficiency for RNA 3D structure modeling and prediction. The overall potential parameters were derived based on structural statistics sampled from experimental structures. For protein, a general, transferable coarse-grain framework based on the Gay-Berne potential and electrostatic point multipole expansion was developed for polypeptide simulations. Next, an advanced atomistic model was developed to model electrostatic interaction with high resolution and incorporates electronic polarization effect that is ignored in conventional atomistic models. The last part of my thesis work involves applying all-atom molecular simulations to address important questions and problems in biophysics and structural biology. For example, the interaction between protein and miRNA, the recognition mechanism of antigen and antibody, and the structure dynamics of protein in mixed denaturants.


Molecular Modeling at the Atomic Scale

Molecular Modeling at the Atomic Scale

Author: Ruhong Zhou

Publisher: CRC Press

Published: 2014-08-21

Total Pages: 392

ISBN-13: 1466562951

DOWNLOAD EBOOK

Although molecular modeling has been around for a while, the groundbreaking advancement of massively parallel supercomputers and novel algorithms for parallelization is shaping this field into an exciting new area. Developments in molecular modeling from experimental and computational techniques have enabled a wide range of biological applications. Responding to this renaissance, Molecular Modeling at the Atomic Scale: Methods and Applications in Quantitative Biology includes discussions of advanced techniques of molecular modeling and the latest research advancements in biomolecular applications from leading experts. The book begins with a brief introduction of major methods and applications, then covers the development of cutting-edge methods/algorithms, new polarizable force fields, and massively parallel computing techniques, followed by descriptions of how these novel techniques can be applied in various research areas in molecular biology. It also examines the self-assembly of biomacromolecules, including protein folding, RNA folding, amyloid peptide aggregation, and membrane lipid bilayer formation. Additional topics highlight biomolecular interactions, including protein interactions with DNA/RNA, membrane, ligands, and nanoparticles. Discussion of emerging topics in biomolecular modeling such as DNA sequencing with solid-state nanopores and biological water under nanoconfinement round out the coverage. This timely summary contains the perspectives of leading experts on this transformation in molecular biology and includes state-of-the-art examples of how molecular modeling approaches are being applied to critical questions in modern quantitative biology. It pulls together the latest research and applications of molecular modeling and real-world expertise that can boost your research and development of applications in this rapidly changing field.


Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer

Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer

Author: Ilia A. Solov’yov

Publisher: Springer

Published: 2017-05-16

Total Pages: 460

ISBN-13: 3319560875

DOWNLOAD EBOOK

This book introduces readers to MesoBioNano (MBN) Explorer – a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface – the MBN Studio – which enables the set-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science – ranging from the nano- to the mesoscale. MBN Explorer is particularly suited to computing the system’s energy, to optimizing molecular structure, and to exploring the various facets of molecular and random walk dynamics. The package allows the use of a broad variety of interatomic potentials and can, e.g., be configured to select any subset of a molecular system as rigid fragments, whenever a significant reduction in the number of dynamical degrees of freedom is required for computational practicalities. MBN Studio enables users to easily construct initial geometries for the molecular, liquid, crystalline, gaseous and hybrid systems that serve as input for the subsequent simulations of their physical and chemical properties using MBN Explorer. Despite its universality, the computational efficiency of MBN Explorer is comparable to that of other, more specialized software packages, making it a viable multi-purpose alternative for the computational modeling of complex molecular systems. A number of detailed case studies presented in the second part of this book demonstrate MBN Explorer’s usefulness and efficiency in the fields of atomic clusters and nanoparticles, biomolecular systems, nanostructured materials, composite materials and hybrid systems, crystals, liquids and gases, as well as in providing modeling support for novel and emerging technologies. Last but not least, with the release of the 3rd edition of MBN Explorer in spring 2017, a free trial version will be available from the MBN Research Center website (mbnresearch.com).