This is the first book devoted to low power circuit design, and its authors have been among the first to publish papers in this area.· Low-Power CMOS VLSI Design· Physics of Power Dissipation in CMOS FET Devices· Power Estimation· Synthesis for Low Power· Design and Test of Low-Voltage CMOS Circuits· Low-Power Static Ram Architectures· Low-Energy Computing Using Energy Recovery Techniques· Software Design for Low Power
This is an up-to-date treatment of the analysis and design of CMOS integrated digital logic circuits. The self-contained book covers all of the important digital circuit design styles found in modern CMOS chips, emphasizing solving design problems using the various logic styles available in CMOS.
Silicon-On-Insulator (SOI) CMOS technology has been regarded as another major technology for VLSI in addition to bulk CMOS technology. Owing to the buried oxide structure, SOI technology offers superior CMOS devices with higher speed, high density, and reduced second order effects for deep-submicron low-voltage, low-power VLSI circuits applications. In addition to VLSI applications, and because of its outstanding properties, SOI technology has been used to realize communication circuits, microwave devices, BICMOS devices, and even fiber optics applications. CMOS VLSI Engineering: Silicon-On-Insulator addresses three key factors in engineering SOI CMOS VLSI - processing technology, device modelling, and circuit designs are all covered with their mutual interactions. Starting from the SOI CMOS processing technology and the SOI CMOS digital and analog circuits, behaviors of the SOI CMOS devices are presented, followed by a CAD program, ST-SPICE, which incorporates models for deep-submicron fully-depleted mesa-isolated SOI CMOS devices and special purpose SOI devices including polysilicon TFTs. CMOS VLSI Engineering: Silicon-On-Insulator is written for undergraduate senior students and first-year graduate students interested in CMOS VLSI. It will also be suitable for electrical engineering professionals interested in microelectronics.
A practical, comprehensive survey of SOI CMOS devices and circuitsfor microelectronics engineers The microelectronics industry is becoming increasingly dependent onSOI CMOS VLSI devices and circuits. This book is the first toaddress this important topic with a practical focus on devices andcircuits. It provides an up-to-date survey of the current knowledgeregarding SOI device behaviors and describes state-of-the-artlow-voltage CMOS VLSI analog and digital circuit techniques. Low-Voltage SOI CMOS VLSI Devices and Circuits covers the entirefield, from basic concepts to the most advanced ideas. Topicsinclude: * SOI device behavior: fundamental and floating body effects, hotcarrier effects, sensitivity, reliability, self-heating, breakdown,ESD, dual-gate devices, accumulation-mode devices, short channeleffects, and narrow channel effects * Low-voltage SOI digital circuits: floating body effects, DRAM,SRAM, static logic, dynamic logic, gate array, CPU, frequencydivider, and DSP * Low-voltage SOI analog circuits: op amps, filters, ADC/DAC,sigma-delta modulators, RF circuits, VCO, mixers, low-noiseamplifiers, and high-temperature circuits With over 300 references to the state of the art and over 300important figures on low-voltage SOI CMOS devices and circuits,this volume serves as an authoritative, reliable resource forengineers designing these circuits in high-tech industries.
Cutting-Edge CMOS VLSI Design for Manufacturability Techniques This detailed guide offers proven methods for optimizing circuit designs to increase the yield, reliability, and manufacturability of products and mitigate defects and failure. Covering the latest devices, technologies, and processes, Nanoscale CMOS VLSI Circuits: Design for Manufacturability focuses on delivering higher performance and lower power consumption. Costs, constraints, and computational efficiencies are also discussed in the practical resource. Nanoscale CMOS VLSI Circuits covers: Current trends in CMOS VLSI design Semiconductor manufacturing technologies Photolithography Process and device variability: analyses and modeling Manufacturing-Aware Physical Design Closure Metrology, manufacturing defects, and defect extraction Defect impact modeling and yield improvement techniques Physical design and reliability DFM tools and methodologies
Geared to the needs of engineers and designers in the field, this unique volume presents a remarkably detailed analysis of one of the hottest and most compelling research topics in microelectronics today - namely, low-voltage CMOS VLSI circuit techniques for VLSI systems. It features complete guidelines to diversified low-voltage and low-power circuit techniques, emphasizing the role of submicron and CMOS processing technology and device modeling in the circuit designs of low-voltage CMOS VLSI.
This practical, tool-independent guide to designing digital circuits takes a unique, top-down approach, reflecting the nature of the design process in industry. Starting with architecture design, the book comprehensively explains the why and how of digital circuit design, using the physics designers need to know, and no more.
This book conveys an understanding of CMOS technology, circuit design, layout, and system design sufficient to the designer. The book deals with the technology down to the layout level of detail, thereby providing a bridge from a circuit to a form that may be fabricated. The early chapters provide a circuit view of the CMOS IC design, the middle chapters cover a sub-system view of CMOS VLSI, and the final section illustrates these techniques using a real-world case study.