This book covers the latest achievements of the Theory of Classes of Finite Groups. It introduces some unpublished and fundamental advances in this Theory and provides a new insight into some classic facts in this area. By gathering the research of many authors scattered in hundreds of papers the book contributes to the understanding of the structure of finite groups by adapting and extending the successful techniques of the Theory of Finite Soluble Groups.
This book offers a systematic introduction to recent achievements and development in research on the structure of finite non-simple groups, the theory of classes of groups and their applications. In particular, the related systematic theories are considered and some new approaches and research methods are described – e.g., the F-hypercenter of groups, X-permutable subgroups, subgroup functors, generalized supplementary subgroups, quasi-F-group, and F-cohypercenter for Fitting classes. At the end of each chapter, we provide relevant supplementary information and introduce readers to selected open problems.
One of the characteristics of modern algebra is the development of new tools and concepts for exploring classes of algebraic systems, whereas the research on individual algebraic systems (e. g. , groups, rings, Lie algebras, etc. ) continues along traditional lines. The early work on classes of alge bras was concerned with showing that one class X of algebraic systems is actually contained in another class F. Modern research into the theory of classes was initiated in the 1930's by Birkhoff's work [1] on general varieties of algebras, and Neumann's work [1] on varieties of groups. A. I. Mal'cev made fundamental contributions to this modern development. ln his re ports [1, 3] of 1963 and 1966 to The Fourth All-Union Mathematics Con ference and to another international mathematics congress, striking the ories of classes of algebraic systems were presented. These were later included in his book [5]. International interest in the theory of formations of finite groups was aroused, and rapidly heated up, during this time, thanks to the work of Gaschiitz [8] in 1963, and the work of Carter and Hawkes [1] in 1967. The major topics considered were saturated formations, Fitting classes, and Schunck classes. A class of groups is called a formation if it is closed with respect to homomorphic images and subdirect products. A formation is called saturated provided that G E F whenever Gjip(G) E F.
In February 1981, the classification of the finite simple groups (Dl)* was completed,t. * representing one of the most remarkable achievements in the history or mathematics. Involving the combined efforts of several hundred mathematicians from around the world over a period of 30 years, the full proof covered something between 5,000 and 10,000 journal pages, spread over 300 to 500 individual papers. The single result that, more than any other, opened up the field and foreshadowed the vastness of the full classification proof was the celebrated theorem of Walter Feit and John Thompson in 1962, which stated that every finite group of odd order (D2) is solvable (D3)-a statement expressi ble in a single line, yet its proof required a full 255-page issue of the Pacific 10urnal of Mathematics [93]. Soon thereafter, in 1965, came the first new sporadic simple group in over 100 years, the Zvonimir Janko group 1 , to further stimulate the 1 'To make the book as self-contained as possible. we are including definitions of various terms as they occur in the text. However. in order not to disrupt the continuity of the discussion. we have placed them at the end of the Introduction. We denote these definitions by (DI). (D2), (D3). etc.
The finite groups of Lie type are of basic importance in the theory of groups. A classic in its field, this book presents the theories of finite groups of Lie type in a clear and accessible style, especially with regard to the main concepts of the theory and the techniques of proof used, and gives a detailed exposition of the complex representation theory.
Applications of Finite Groups focuses on the applications of finite groups to problems of physics, including representation theory, crystals, wave equations, and nuclear and molecular structures. The book first elaborates on matrices, groups, and representations. Topics include abstract properties, applications, matrix groups, key theorem of representation theory, properties of character tables, simply reducible groups, tensors and invariants, and representations generated by functions. The text then examines applications and subgroups and representations, as well as subduced and induced representations, fermion annihilation and creation operators, crystallographic point groups, proportionality tensors in crystals, and nonrelativistic wave equations. The publication takes a look at space group representations and energy bands, symmetric groups, and applications. Topics include molecular and nuclear structures, multiplet splitting in crystalline electric fields, construction of irreducible representations of the symmetric groups, and reality of representations. The manuscript is a dependable source of data for physicists and researchers interested in the applications of finite groups.
Provides an outline and modern overview of the classification of the finite simple groups. It primarily covers the 'even case', where the main groups arising are Lie-type (matrix) groups over a field of characteristic 2. The book thus completes a project begun by Daniel Gorenstein's 1983 book, which outlined the classification of groups of 'noncharacteristic 2 type'.
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.
The study of finite groups factorised as a product of two or more subgroups has become a subject of great interest during the last years with applications not only in group theory, but also in other areas like cryptography and coding theory. It has experienced a big impulse with the introduction of some permutability conditions. The aim of this book is to gather, order, and examine part of this material, including the latest advances made, give some new approach to some topics, and present some new subjects of research in the theory of finite factorised groups. Some of the topics covered by this book include groups whose subnormal subgroups are normal, permutable, or Sylow-permutable, products of nilpotent groups, and an exhaustive structural study of totally and mutually permutable products of finite groups and their relation with classes of groups. This monograph is mainly addressed to graduate students and senior researchers interested in the study of products and permutability of finite groups. A background in finite group theory and a basic knowledge of representation theory and classes of groups is recommended to follow it.