Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
The ability to exploit the potential of wild relatives carrying beneficial traits is a major goal in breeding programs. However, it relies on the possibility of the chromosomes from the crop and wild species in interspecific crosses to recognize, associate, and undergo crossover formation during meiosis, the cellular process responsible for producing gametes with half the genetic content of their parent cells. Unfortunately, in most cases, a barrier exists preventing successful hybridization between the wild and crop chromosomes. Understanding the mechanisms controlling chromosome associations during meiosis are of great interest in plant breeding and will allow chromosome manipulation to introduce genetic variability from related species into a crop. In addition to interspecific hybrids, other materials, such as natural and synthetic polyploids and introgression lines derived from allopolyploids, among others, are powerful tools in the framework of plant breeding. For example, an extra pair of alien chromosomes in the full genome complement of a crop species has been frequently used as a first step to access genetic variation from the secondary gene pool in breeding programs. In addition, such introgression lines are also pivotal in the study of interspecific genetic interactions, in the chromosomal location of genetic markers, and in the study of chromosome structure and behavior in somatic and meiotic cells. Contained in this Special Issue are accounts of original research, including new tools to identify chromosome introgressions and the development and characterization of introgression lines and interspecific hybrids carrying desirable agronomic traits for plant breeding purposes. Also included are reviews about the chromosome engineering of tropical cash crops and the effect of chromosome structure on chromosome associations and recombination during meiosis to allow chromosome manipulation in the framework of plant breeding.
The past two decades have brought with them remarkable progress in plant chromosomal research. The chromosome structure has been clarified in great detail, enabling identification of gene sequences at the microscopic level, which has aided the analysis of biodiversity. Knowledge of chromosome structure has played a crucial role in the improvement of crop species and has far-reaching implications. The manipulation and engineering of chromosomes involves a panoply of novel methods, combining conventional and modern techniques of biotechnology. A working knowledge of such techniques is essential for today's students and researchers, and the plant system, because of totipotency, requires special treatment. This treatise covers all the latest methods involved in the study of evolution, biodiversity, chromosome manipulation and engineering.
Summarizing landmark research, Volume 2 of this essential series furnishes information on the availability of germplasm resources that breeders can exploit for producing high-yielding cereal crop varieties. Written by leading international experts, this volume offers the most comprehensive and up-to-date information on employing genetic resources t
Our requirement for plant breeders to be successful has never been greater. However one views the forecasted numbers for future population growth we will need, in the immediate future, to be feeding, clothing and housing many more people than we do, inadequately, at present. Plant breeding represents the most valuable strategy in increasing our productivity in a way that is sustainable and environmentally sensitive. Plant breeding can rightly be considered as one of the oldest multidisciplinary subjects that is known to humans. It was practised by people who first started to carry out a settled form of agriculture. The art, as it must have been at that stage, was applied without any formal underlying framework, but achieved dramatic results, as witnessed by the forms of cultivated plants we have today. We are now learning how to apply successfully the results of yet imperfect scientific knowledge. This knowledge is, however, rapidly developing, particularly in areas of tissue culture, biotechnology and molecular biology. Plant breeding's inherent multifaceted nature means that alongside obvious subject areas like genetics we also need to consider areas such as: statistics, physiology, plant pathology, entomology, biochemistry, weed science, quality, seed characteristics, repro ductive biology, trial design, selection and computing. It therefore seems apparent that modern plant breeders need to have a grasp of wide range of scientific knowledge and expertise if they are successfully to a exploit the techniques, protocols and strategies which are open to them.
Awarded Bookauthority's "Best Aquaculture Books of all Time" A comprehensive resource that covers all the aspects of sex control in aquaculture written by internationally-acclaimed scientists Comprehensive in scope, Sex Control in Aquaculture first explains the concepts and rationale for sex control in aquaculture, which serves different purposes. The most important are: to produce monosex stocks to rear only the fastest-growing sex in some species, to prevent precocious or uncontrolled reproduction in other species and to aid in broodstock management. The application of sex ratio manipulation for population control and invasive species management is also included. Next, this book provides detailed and updated information on the underlying genetic, epigenetic, endocrine and environmental mechanisms responsible for the establishment of the sexes, and explains chromosome set manipulation techniques, hybridization and the latest gene knockout approaches. Furthermore, the book offers detailed protocols and key summarizing information on how sex control is practiced worldwide in 35 major aquaculture species or groups, including fish and crustaceans, and puts the focus on its application in the aquaculture industry. With contributions from an international panel of leading scientists, Sex Control in Aquaculture will appeal to a large audience: aquaculture/fisheries professionals and students, scientists or biologists working with basic aspects of fish/shrimp biology, growth and reproductive endocrinology, genetics, molecular biology, evolutionary biology, and R&D managers and administrators. This text explores sex control technologies and monosex production of commercially-farmed fish and crustacean species that are highly in demand for aquaculture, to improve feed utilization efficiency, reduce energy consumption for reproduction and eliminate a series of problems caused by mixed sex rearing. Thus, this book: Contains contributions from an international panel of leading scientists and professionals in the field Provides comprehensive coverage of both established and new technologies to control sex ratios that are becoming more necessary to increase productivity in aquaculture Includes detailed coverage of the most effective sex control techniques used in the world's most important commercially-farmed species Sex Control in Aquaculture is the comprehensive resource for understanding the biological rationale, scientific principles and real-world practices in this exciting and expanding field.
"The book...is, in fact, a short text on the many practical problems...associated with translating the explosion in basic biotechnological research into the next Green Revolution," explains Economic Botany. The book is "a concise and accurate narrative, that also manages to be interesting and personal...a splendid little book." Biotechnology states, "Because of the clarity with which it is written, this thin volume makes a major contribution to improving public understanding of genetic engineering's potential for enlarging the world's food supply...and can be profitably read by practically anyone interested in application of molecular biology to improvement of productivity in agriculture."
This proceedings is a collection of 46 selected papers that were presented at the 12th International Wheat Genetics Symposium (IWGS). Since the launch of the wheat genome sequencing project in 2005, the arrival of draft genome sequences has marked a new era in wheat genetics and genomics, catalyzing rapid advancement in the field. This book provides a comprehensive review of the forefront of wheat research, across various important topics such as germplasm and genetic diversity, cytogenetics and allopolyploid evolution, genome sequencing, structural and functional genomics, gene function and molecular biology, biotic stress, abiotic stress, grain quality, and classical and molecular breeding. Following an introduction, 9 parts of the book are dedicated to each of these topics. A final, 11th part entitled “Toward Sustainable Wheat Production” contains 7 excellent papers that were presented in the 12th IWGS Special Session supported by the OECD. With rapid population growth and radical climate changes, the world faces a global food crisis and is in need of another Green Revolution to boost yields of wheat and other widely grown staple crops. Although this book focuses on wheat, many of the newly developed techniques and results presented here can be applied to other plant species with large and complex genomes. As such, this volume is highly recommended for all students and researchers in wheat sciences and related plant sciences and for those who are interested in stable food production and food security.