Chromosome biology has been brought to a golden age by phenomenal advanced in molecular genetics and techniques. This is true in the plant arena, and it is becoming increasingly true in animal studies, where chromosomes are more difficult to work with. With advanced knowledge of transformation, scientists can tell exactly where a new element enters a chromosome. Conversely, molecular biologists can make large mistakes if they do not understand the behavior of chromosomes. Written by internationally recognized experts in the field, this book is the most authoritative work on the subject to date. Students of genetics, crop science and plant breeding, entomology, animal science, and related fields will benefit from this comprehensive and practical textbook.
Integrating classical knowledge of chromosome organisation with recent molecular and functional findings, this book presents an up-to-date view of chromosome organisation and function for advanced undergraduate students studying genetics. The organisation and behaviour of chromosomes is central to genetics and the equal segregation of genes and chromosomes into daughter cells at cell division is vital. This text aims to provide a clear and straightforward explanation of these complex processes. Following a brief historical introduction, the text covers the topics of cell cycle dynamics and DNA replication; mitosis and meiosis; the organisation of DNA into chromatin; the arrangement of chromosomes in interphase; euchromatin and heterochromatin; nucleolus organisers; centromeres and telomeres; lampbrush and polytene chromosomes; chromosomes and evolution; chromosomes and disease, and artificial chromosomes. Topics are illustrated with examples from a wide variety of organisms, including fungi, plants, invertebrates and vertebrates. This book will be valuable resource for plant, animal and human geneticists and cell biologists. Originally a zoologist, Adrian Sumner has spent over 25 years studying human and other mammalian chromosomes with the Medical Research Council (UK). One of the pioneers of chromosome banding, he has used electron microscopy and immunofluorescence to study chromosome organisation and function, and latterly has studied factors involved in chromosome separation at mitosis. Adrian is an Associate Editor of the journal Chromosome Research, acts as a consultant biologist and is also Chair of the Committee of the International Chromosome Conferences. The most up-to-date overview of chromosomes in all their forms. Introduces cutting-edge topics such as artificial chromosomes and studies of telomere biology. Describes the methods used to study chromosomes. The perfect complement to Turner.
It's obvious why only men develop prostate cancer and why only women get ovarian cancer. But it is not obvious why women are more likely to recover language ability after a stroke than men or why women are more apt to develop autoimmune diseases such as lupus. Sex differences in health throughout the lifespan have been documented. Exploring the Biological Contributions to Human Health begins to snap the pieces of the puzzle into place so that this knowledge can be used to improve health for both sexes. From behavior and cognition to metabolism and response to chemicals and infectious organisms, this book explores the health impact of sex (being male or female, according to reproductive organs and chromosomes) and gender (one's sense of self as male or female in society). Exploring the Biological Contributions to Human Health discusses basic biochemical differences in the cells of males and females and health variability between the sexes from conception throughout life. The book identifies key research needs and opportunities and addresses barriers to research. Exploring the Biological Contributions to Human Health will be important to health policy makers, basic, applied, and clinical researchers, educators, providers, and journalists-while being very accessible to interested lay readers.
There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
This reference book provides information on plant cytogenetics for students, instructors, and researchers. Topics covered by international experts include classical cytogenetics of plant genomes; plant chromosome structure; functional, molecular cytology; and genome dynamics. In addition, chapters are included on several methods in plant cytogenetics, informatics, and even laboratory exercises for aspiring or practiced instructors. The book provides a unique combination of historical and modern subject matter, revealing the central role of plant cytogenetics in plant genetics and genomics as currently practiced. This breadth of coverage, together with the inclusion of methods and instruction, is intended to convey a deep and useful appreciation for plant cytogenetics. We hope it will inform and inspire students, researchers, and teachers to continue to employ plant cytogenetics to address fundamental questions about the cytology of plant chromosomes and genomes for years to come. Hank W. Bass is a Professor in the Department of Biological Science at Florida State University. James A. Birchler is a Professor in the Division of Biological Sciences at the University of Missouri.
This book presents the latest advances concerning the regulation of chromosome segregation during cell division by means of centromeres and kinetochores. The authors cover both state-of-the-art techniques and a range of species and model systems, shedding new light on the molecular mechanisms controlling the transmission of genetic material between cell divisions and from parent to offspring. The chapters cover five major areas related to the current study of centromeres and kinetochores: 1) their genetic and epigenetic features, 2) key breakthroughs at the molecular, proteomic, imaging and biochemical level, 3) the constitutive centromere proteins, 4) the role of centromere proteins in the physical process of chromosome segregation and its careful orchestration through elaborate regulation, and 5) intersections with reproductive biology, human health and disease, as well as chromosome evolution. The book offers an informative and provocative guide for newcomers as well as those already acquainted with the field.
The fourth edition of this well-known text provides students, researchers and technicians in the area of medicine, genetics and cell biology with a concise, understandable introduction to the structure and behavior of human chromosomes. This new edition continues to cover both basic and up-to-date material on normal and defective chromosomes, yet is particularly strengthened by the complete revision of the material on the molecular genetics of chromosomes and chromosomal defects. The mapping and molecular analysis of chromosomes is one of the most exciting and active areas of modern biomedical research, and this book will be invaluable to scientists, students, technicians and physicians with an interest in the function and dysfunction of chromosomes.
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.