Chromatin Readers in Health and Disease

Chromatin Readers in Health and Disease

Author: Olivier Binda

Publisher: Academic Press

Published: 2023-09-22

Total Pages: 422

ISBN-13: 0323903142

DOWNLOAD EBOOK

Chromatin Readers in Health and Disease, Volume 35, a new release in the Translational Epigenetics series, gathers and makes actionable our current understanding of how chromatin readers regulate access to genetic information, and how their aberrant regulation can contribute to human pathologies. Chromatin readers discussed include 14-3-3 Dinshaw, ADD, Ankyrin, BAH, BET, BIR, BRCT, bromodomains and Kac readers, chromodomains and chromobarrel readers, citrullination readers, macrodomains and poly-ADP-ribose readers, MBT, PHD and double PHD, PWWP, SUMO (H4K12) readers, Tudor and TTD, UDR and ubiquitin, WD40, YEATS (crotonyl reader), MBD, SRA, and Methyl-RNA readers.In the book, more than a dozen leaders in the field examine a range of protein readers, their relationship to human disease, and the early therapeutics that act as chromatin signaling factors to treat cancers and Huntington's disease, among other disorders. - Enables researchers and clinicians to understand chromatin signaling mechanisms that regulate gene expression through chromatin readers - Highlights the role of chromatin readers in a variety of human pathologies, as well as early therapeutics that act on chromatin signaling - Includes chapter contributions from international leaders in the field


Chromatin Signaling and Diseases

Chromatin Signaling and Diseases

Author: Olivier Binda

Publisher: Academic Press

Published: 2016-08-06

Total Pages: 468

ISBN-13: 012802609X

DOWNLOAD EBOOK

Chromatin Signaling and Diseases covers the molecular mechanisms that regulate gene expression, which govern everything from embryonic development, growth, and human pathologies associated with aging, such as cancer. This book helps researchers learn about or keep up with the quickly expanding field of chromatin signaling. After reading this book, clinicians will be more capable of explaining the mechanisms of gene expression regulation to their patients to reassure them about new drug developments that target chromatin signaling mechanisms. For example, several epigenetic drugs that act on chromatin signaling factors are in clinical trials or even approved for usage in cancer treatments, Alzheimer's, and Huntington's diseases. Other epigenetic drugs are in development to regulate various class of chromatin signaling factors. To keep up with this changing landscape, clinicians and doctors will need to stay familiar with genetic advances that translate to clinical practice, such as chromatin signaling. Although sequencing of the human genome was completed over a decade ago and its structure investigated for nearly half a century, molecular mechanisms that regulate gene expression remain largely misunderstood. An emerging concept called chromatin signaling proposes that small protein domains recognize chemical modifications on the genome scaffolding histone proteins, facilitating the nucleation of enzymatic complexes at specific loci that then open up or shut down the access to genetic information, thereby regulating gene expression. The addition and removal of chemical modifications on histones, as well as the proteins that specifically recognize these, is reviewed in Chromatin Signaling and Diseases. Finally, the impact of gene expression defects associated with malfunctioning chromatin signaling is also explored. - Explains molecular mechanisms that regulate gene expression, which governs everything from embryonic development, growth, and human pathologies associated with aging - Educates clinicians and researchers about chromatin signaling, a molecular mechanism that is changing our understanding of human pathology - Explores the addition and removal of chemical modifications on histones, the proteins that specifically recognize these, and the impact of gene expression defects associated with malfunctioning chromatin signaling - Helps researchers learn about the quickly expanding field of chromatin signaling


Chromatin Signaling and Neurological Disorders

Chromatin Signaling and Neurological Disorders

Author:

Publisher: Academic Press

Published: 2019-05-24

Total Pages: 380

ISBN-13: 0128137975

DOWNLOAD EBOOK

Chromatin Signaling and Neurological Disorders, Volume Seven, explores our current understanding of how chromatin signaling regulates access to genetic information, and how their aberrant regulation can contribute to neurological disorders. Researchers, students and clinicians will not only gain a strong grounding on the relationship between chromatin signaling and neurological disorders, but they'll also discover approaches to better interpret and employ new diagnostic studies and epigenetic-based therapies. A diverse range of chapters from international experts speaks to the basis of chromatin and epigenetic signaling pathways and specific chromatin signaling factors that regulate a range of diseases. In addition to the basic science of chromatin signaling factors, each disease-specific chapter speaks to the translational or clinical significance of recent findings, along with important implications for the development of epigenetics-based therapeutics. Common themes of translational significance are also identified across disease types, as well as the future potential of chromatin signaling research. - Examines specific chromatin signaling factors that regulate spinal muscular atrophy, ulbospinal muscular atrophy, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, multiple sclerosis, Angelman syndrome, Rader-Willi syndrome, and more - Contains chapter contributions from international experts who speak to the clinical significance of recent findings and the implications for the development of epigenetics-based therapeutics - Provides researchers, students and clinicians with approaches to better interpret and employ new diagnostic studies for treating neurological disorders


RNA-Based Regulation in Human Health and Disease

RNA-Based Regulation in Human Health and Disease

Author:

Publisher: Academic Press

Published: 2020-08-19

Total Pages: 446

ISBN-13: 0128171944

DOWNLOAD EBOOK

RNA-based Regulation in Human Health and Disease offers an in-depth exploration of RNA mediated genome regulation at different hierarchies. Beginning with multitude of canonical and non-canonical RNA populations, especially noncoding RNA in human physiology and evolution, further sections examine the various classes of RNAs (from small to large noncoding and extracellular RNAs), functional categories of RNA regulation (RNA-binding proteins, alternative splicing, RNA editing, antisense transcripts and RNA G-quadruplexes), dynamic aspects of RNA regulation modulating physiological homeostasis (aging), role of RNA beyond humans, tools and technologies for RNA research (wet lab and computational) and future prospects for RNA-based diagnostics and therapeutics. One of the core strengths of the book includes spectrum of disease-specific chapters from experts in the field highlighting RNA-based regulation in metabolic & neurodegenerative disorders, cancer, inflammatory disease, viral and bacterial infections. We hope the book helps researchers, students and clinicians appreciate the role of RNA-based regulation in genome regulation, aiding the development of useful biomarkers for prognosis, diagnosis, and novel RNA-based therapeutics. - Comprehensive information of non-canonical RNA-based genome regulation modulating human health and disease - Defines RNA classes with special emphasis on unexplored world of noncoding RNA at different hierarchies - Disease specific role of RNA - causal, prognostic, diagnostic and therapeutic - Features contributions from leading experts in the field


Environmental Epigenetics

Environmental Epigenetics

Author: L. Joseph Su

Publisher: Springer

Published: 2015-05-18

Total Pages: 327

ISBN-13: 1447166787

DOWNLOAD EBOOK

This book examines the toxicological and health implications of environmental epigenetics and provides knowledge through an interdisciplinary approach. Included in this volume are chapters outlining various environmental risk factors such as phthalates and dietary components, life states such as pregnancy and ageing, hormonal and metabolic considerations and specific disease risks such as cancer cardiovascular diseases and other non-communicable diseases. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses.


Epigenetics of Aging

Epigenetics of Aging

Author: Trygve O. Tollefsbol

Publisher: Springer Science & Business Media

Published: 2009-11-11

Total Pages: 462

ISBN-13: 1441906398

DOWNLOAD EBOOK

Recent studies have indicated that epigenetic processes may play a major role in both cellular and organismal aging. These epigenetic processes include not only DNA methylation and histone modifications, but also extend to many other epigenetic mediators such as the polycomb group proteins, chromosomal position effects, and noncoding RNA. The topics of this book range from fundamental changes in DNA methylation in aging to the most recent research on intervention into epigenetic modifications to modulate the aging process. The major topics of epigenetics and aging covered in this book are: 1) DNA methylation and histone modifications in aging; 2) Other epigenetic processes and aging; 3) Impact of epigenetics on aging; 4) Epigenetics of age-related diseases; 5) Epigenetic interventions and aging: and 6) Future directions in epigenetic aging research. The most studied of epigenetic processes, DNA methylation, has been associated with cellular aging and aging of organisms for many years. It is now apparent that both global and gene-specific alterations occur not only in DNA methylation during aging, but also in several histone alterations. Many epigenetic alterations can have an impact on aging processes such as stem cell aging, control of telomerase, modifications of telomeres, and epigenetic drift can impact the aging process as evident in the recent studies of aging monozygotic twins. Numerous age-related diseases are affected by epigenetic mechanisms. For example, recent studies have shown that DNA methylation is altered in Alzheimer’s disease and autoimmunity. Other prevalent diseases that have been associated with age-related epigenetic changes include cancer and diabetes. Paternal age and epigenetic changes appear to have an effect on schizophrenia and epigenetic silencing has been associated with several of the progeroid syndromes of premature aging. Moreover, the impact of dietary or drug intervention into epigenetic processes as they affect normal aging or age-related diseases is becoming increasingly feasible.


Introduction to Epigenetics

Introduction to Epigenetics

Author: Renato Paro

Publisher: Springer Nature

Published: 2021-03-23

Total Pages: 215

ISBN-13: 3030686701

DOWNLOAD EBOOK

This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease


Epigenetic Biomarkers and Diagnostics

Epigenetic Biomarkers and Diagnostics

Author: Jose Luis Garcia-Gimenez

Publisher: Academic Press

Published: 2015-12-07

Total Pages: 698

ISBN-13: 0128019212

DOWNLOAD EBOOK

Epigenetic Biomarkers and Diagnostics comprises 31 chapters contributed by leading active researchers in basic and clinical epigenetics. The book begins with the basis of epigenetic mechanisms and descriptions of epigenetic biomarkers that can be used in clinical diagnostics and prognostics. It goes on to discuss classical methods and next generation sequencing-based technologies to discover and analyze epigenetic biomarkers. The book concludes with an account of DNA methylation, post-translational modifications and noncoding RNAs as the most promising biomarkers for cancer (i.e. breast, lung, colon, etc.), metabolic disorders (i.e. diabetes and obesity), autoimmune diseases, infertility, allergy, infectious diseases, and neurological disorders. The book describes the challenging aspects of research in epigenetics, and current findings regarding new epigenetic elements and modifiers, providing guidance for researchers interested in the most advanced technologies and tested biomarkers to be used in the clinical diagnosis or prognosis of disease. - Focuses on recent progress in several areas of epigenetics, general concepts regarding epigenetics, and the future prospects of this discipline in clinical diagnostics and prognostics - Describes the importance of the quality of samples and clinical associated data, and also the ethical issues for epigenetic diagnostics - Discusses the advances in epigenomics technologies, including next-generation sequencing based tools and applications - Expounds on the utility of epigenetic biomarkers for diagnosis and prognosis of several diseases, highlighting the study of these biomarkers in cancer, cardiovascular and metabolic diseases, infertility, and infectious diseases - Includes a special section that discusses the relevance of biobanks in the maintenance of high quality biosamples and clinical-associated data, and the relevance of the ethical aspects in epigenetic studies


Epigenetic Technological Applications

Epigenetic Technological Applications

Author: Yujun George Zheng

Publisher: Academic Press

Published: 2015-05-30

Total Pages: 516

ISBN-13: 0128013273

DOWNLOAD EBOOK

Epigenetic Technological Applications is a compilation of state-of-the-art technologies involved in epigenetic research. Epigenetics is an exciting new field of biology research, and many technologies are invented and developed specifically for epigenetics study. With chapters covering the latest developments in crystallography, computational modeling, the uses of histones, and more, Epigenetic Technological Applications addresses the question of how these new ideas, procedures, and innovations can be applied to current epigenetics research, and how they can keep pushing discovery forward and beyond the epigenetic realm. - Discusses technologies that are critical for epigenetic research and application - Includes epigenetic applications for state-of-the-art technologies - Contains a global perspective on the future of epigenetics


Epigenetics in Allergy and Autoimmunity

Epigenetics in Allergy and Autoimmunity

Author: Christopher Chang

Publisher: Springer Nature

Published: 2020-05-22

Total Pages: 408

ISBN-13: 9811534497

DOWNLOAD EBOOK

This book will address the growing roles of epigenetics in disease pathogenesis, and review the contribution of epigenetic modifications to disease onset and progression. The roles that epigenetics plays in facilitating effects of the environment on allergy and immunologic diseases will be reviewed. The book is divided into three parts – the first is an introduction to epigenetics and the methods that have been developed to study epigenetics, the second addresses epigenetics in allergic diseases and the third part will cover epigenetics in autoimmune diseases. With the rapid expansion of knowledge of how genes are regulated and how this regulation affects disease phenotypes, this book will be attractive to experienced researchers as well as those just launching an epigenetics research program. It will also be of interest to allergist, immunologists, rheumatologists and dermatologist who are engaged in clinical practice as a resource for understanding the basis for personalized and precision medicine. For example, the role that epigenetics plays in the pathogenesis in various allergic and autoimmune disorders and how this determines disease phenotypes will be covered extensively in this book. This book will thus help fill the gap in available resources on epigenetics in allergy and autoimmune diseases.