Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
Chemical Glycobiology, Volume 597, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume, the first on chemical glycobiology, contains comprehensive chapters on the Discovery of New Glycosidases from Metagenomic Libraries, Structure-guided directed evolution of glycosidases: A case study in engineering a blood group antigen-cleaving enzyme, A Pipeline for Studying and Engineering Single-Subunit Oligosaccharyltransferases, Directed evolution of glycopeptides using mRNA display, Chemoenzymatic Synthesis and Applications of Prokaryote-Specific UDP-Sugars, and Biosynthesis of Legionaminic Acid and its Incorporation into Glycoconjugates. Readers will find the latest information on this developing area of research, as reported by leaders in the field. - Presents an updated volume in this regular series - Covers research on chemical glycobiology
As a reflection of the quantum leap that has been made in the study of glycostructures, the first edition of this book has been completely revised and updated. The editors give up-to-date information on glycostructures, their chemistry and chemical biology in the form of a completely comprehensive survey. Glycostructures play highly diverse and crucial roles in a myriad of organisms and important systems in biology, physiology, medicine, bioengineering and technology. Only in recent years have the tools been developed to partly understand the highly complex functions and the chemistry behind them. While many facts remain undiscovered, this MRW has been contributed to by a large number of the world’s leading researchers in the field.
This ACS symposium book on Chemical Glycobiology summarizes the current status of the chemical techniques and tools developed to study the biological roles of carbohydrates and glycoconjugates. It is suitable for chemists and biochemists who are interested in synthesizing, understanding, and applying carbohydrate-related molecules or manipulating biological systems using carbohydrates.
This book provides current glycoinformatics methods and protocols used to support the determination of carbohydrate structures in biological samples as well as carbohydrate structure databases, the interaction of carbohydrates with proteins, and theoretical and experimental methods to study their three-dimensional structure and dynamics. Glycoinformatics explores this recently emerged field, which has come into being in order to address the needs of encoding, storing, and analyzing carbohydrate ‘sequences’ and their taxonomy using computers. Written in the highly successful Methods in Molecular Biology series format, chapters contain the kind of detailed description and key implementation advice to ensure successful results. Authoritative and timely, Glycoinformatics demonstrates the progress that has been achieved in glycoinformatics, which indicates that it is no longer a niche subject covered by only a few scientists but is truly coming of age.
Detailing commonly used methods and procedures, this reference discusses the reactions and derivative forms of carbohydrates. Preparative Carbohydrate Chemistry covers the formation, cleavage, and reactions of derivatives and illustrates bond-forming reactions of SN2 types, free radicals, chain extensions, and branching. The contents include: sugar derivatives; selected reactions in carbohydrate chemistry; chemical synthesis of oligosaccharides and O-and N -glycosyl compounds; enzymatic synthesis of sialic acid, KDO, and related deoxyulosonic acids, and of oligosaccharides; synthesis of -glycosyl compounds; carbocycles from carbohydrates; and total synthesis of sugars from non-sugars. This authoritative reference offers relevant chapters on reactions and derivative forms of carbohydrates, including commonly used methods as well as new experimental procedures. It also contains insightful chapter commentaries and succinct topic histories.
A new focus on glycoscience, a field that explores the structures and functions of sugars, promises great advances in areas as diverse as medicine, energy generation, and materials science, this report finds. Glycans-also known as carbohydrates, saccharides, or simply as sugars-play central roles in many biological processes and have properties useful in an array of applications. However, glycans have received little attention from the research community due to a lack of tools to probe their often complex structures and properties. Transforming Glycoscience: A Roadmap for the Future presents a roadmap for transforming glycoscience from a field dominated by specialists to a widely studied and integrated discipline, which could lead to a more complete understanding of glycans and help solve key challenges in diverse fields.
Glycans play essential roles in diverse biological and etiological processes and their structural complexity endow various functions. The glycome is the entire set of glycans produced by an individual organism. As the glycan microarray emerged, a good amount of knowledge has been obtained in understanding the functions of glycans. However, limited accessibility of glycans is a major obstacle to the functional glycomics study. Although isolation from biology samples provided some structures, the low abundance of glycans obtained and the difficulty in complete structural assignment restricted the subsequent assay. To circumvent this limitation, many synthetic strategies, including chemical, enzymatic and chemo-enzymatic ones have been developed to make libraries of structurally defined complex glycans available. The glycans provided by these techniques combined with high-throughput glycoarray techniques have broadened and deepened our understanding about functional glycomics. The aim of this book is to provide a comprehensive review of the current state of the synthetic glycome and a brief introduction of the application of the synthetic glycome in glycoarray assay. Accordingly, synthetic strategies toward generating glycans with comprehensive structures as well as the glycoarrays to unveil the glycan functions are described in this book.
Chemical Glycobiology, Part B, Volume 598, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume is the second release on chemical glycobiology. - Presents an updated volume in this regular series - Covers research on chemical glycobiology