This timely volume provides an overview of polymer characterization test methods and presents experimental research in polymers using modern methods. Each chapter describes the principle of the respective method, as well as the detailed procedures of experiments with examples of actual applications and demonstrates the advantages and disadvantages
Modification of Polymer Properties provides, for the first time, in one title, the latest information on gradient IPNs and gradient copolymers. The book covers the broad range of polymer modification routes in a fresh, current view representing a timely addition to the technical literature of this important area. Historically, blends, copolymers, or filled polymers have been developed to meet specific properties, or to optimize the cost/properties relationship. Using the gradient structure approach with conventional radical polymerization, it has been shown that it is possible to optimize properties if appropriate gradients in the composition of copolymer chains are obtained. An overview of the gradient structure approach for designing polymers has not appeared in the recent literature and this title covers the different methods used to modify properties, offering the whole range of ways to modify polymers in just one volume and making this an attractive option for a wide audience of practitioners. The approach for each chapter is to explain the fundamental principles of preparation, cover properties modification, describe future research and applications as examples of materials that may be prepared for specific applications, or that are already in use, in present day applications. The book is for readers that have a basic background in polymer science, as well as those interested in the different ways to combine or modify polymer properties. - Provides an integrated view on how to modify polymer properties - Presents the entire panorama of polymer properties modification in one reference, covering the essential information in each topic - Includes the optimization of properties using gradients in polymers composition or structure
The sheer volume of topics which could have been included under our general title prompted us to make some rather arbitrary decisions about content. Modification by irradiation is not included because the activity in this area is being treated elsewhere. We have chosen to emphasize chemical routes to modification and have striven to pre sent as balanced a representation of current activity as time and page count permit. Industrial applications, both real and potential, are included. Where appropriate, we have encouraged the contributors to include review material to help provide the reader with adequate context. The initial chapter is a review from a historical perspective of polymer modification and contains an extensive bibliography. The remainder of the book is divided into four general areas: Reactions and Preparation of Copolymers Reactions and Preparation of Block and Graft Copolymers Modification Through Condensation Reactions Applications The chemical modification of homopolymers such as polyvinylchlo ride, polyethylene, poly(chloroalkylene sulfides), polysulfones, poly chloromethylstyrene, polyisobutylene, polysodium acrylate, polyvinyl alcohol, polyvinyl chloroformate, sulfonated polystyrene; block and graft copolymers such as poly(styrene-block-ethylene-co-butylene block-styrene), poly(I,4-polybutadiene-block ethylene oxide), star chlorine-telechelic polyisobutylene, poly(isobutylene-co-2,3-dimethyl- 1,3-butadiene), poly(styrene-co-N-butylmethacrylate); cellulose, dex tran and inulin, is described.
Examining the chemical modification of biological polymers and the emerging applications of this technology, Chemical Modification of Biological Polymers reflects the change in emphasis in this subsection of biotechnology from the study of protein structure and function toward applications in therapeutics and diagnostics. Highlights The basic organic chemistry of the modification proteins, nucleic acids, oligosaccharides, polysaccharides, and their applications New analytical technologies used to characterize the chemical modification of biological polymers Identification of in vivo, non-enzymatic chemical modification of biological polymers Specific chemical modifications to generate biopharmaceutical products This book covers the basics on the organic chemistry underlying the chemical modification of biopolymers, including updates on the use of various chemical reagents. It describes the current status of chemical modification of biological polymers and emerging applications of this technology in biotechnology. These technologies are important for the manufacture of conjugate proteins used in drug delivery, for the preparation of nucleic acid microarrays, and for the preparation of hydrogels and other materials used in tissue engineering.
The progressive dwindling of fossil resources, coupled with the drastic increase in oil prices, have sparked a feverish activity in search of alternatives based on renewable resources for the production of energy. Given the predominance of petroleum- and carbon-based chemistry for the manufacture of organic chemical commodities, a similar preoccupation has recently generated numerous initiatives aimed at replacing these fossil sources with renewable counterparts. In particular, major efforts are being conducted in the field of polymer science and technology to prepare macromolecular materials based on renewable resources. The concept of the bio-refinery, viz. the rational exploitation of the vegetable biomass in terms of the separation of its components and their utilisation as such, or after suitable chemical modifications, is thus gaining momentum and considerable financial backing from both the public and private sectors. This collection of chapters, each one written by internationally recognised experts in the corresponding field, covers in a comprehensive fashion all the major aspects related to the synthesis, characterization and properties of macromolecular materials prepared using renewable resources as such, or after appropriate modifications. Thus, monomers such as terpenes and furans, oligomers like rosin and tannins, and polymers ranging from cellulose to proteins and including macromolecules synthesized by microbes, are discussed with the purpose of showing the extraordinary variety of materials that can be prepared from their intelligent exploitation. Particular emphasis has been placed on recent advances and imminent perspectives, given the incessantly growing interest that this area is experiencing in both the scientific and technological realms. - Discusses bio-refining with explicit application to materials - Replete with examples of applications of the concept of sustainable development - Presents an impressive variety of novel macromolecular materials
Organic and Physical Chemistry of Polymers provides a thorough introduction to the fundamentals of polymers, including their structure and synthesis as well as their chemical and physical properties. This accessible guide illuminates the increasingly important role of polymers in modern chemistry, beginning with the essentials, then covering thermodynamics, conformation, morphology, and measurements of molar masses; polymerization mechanisms, reaction of polymers, synthesis of block and graft polymers, and complex topologies; and the mechanical properties, rheology, polymer processing, and fabrication of fibers and films.
Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions summarizes the latest developments regarding polymers, their properties in relation to chemical structure, and methods for estimating and predicting numerical properties from chemical structure. In particular, it examines polymer electrical properties, magnetic properties, and mechanical properties, as well as their crystallization and environmental behavior and failure. The rheological properties of polymer melts and polymer solutions are also considered. Organized into seven parts encompassing 27 chapters, this book begins with an overview of polymer science and engineering, including the typology of polymers and their properties. It then turns to a discussion of thermophysical properties, from transition temperatures to volumetric and calorimetric properties, along with the cohesive aspects and conformation statistics. It also introduces the reader to the behavior of polymers in electromagnetic and mechanical fields of force. The book covers the quantities that influence the transport of heat, momentum, and matter, particularly heat conductivity, viscosity, and diffusivity; properties that control the chemical stability and breakdown of polymers; and polymer properties as an integral concept, with emphasis on processing and product properties. Readers will find tables that give valuable (numerical) data on polymers and include a survey of the group contributions (increments) of almost every additive function considered. This book is a valuable resource for anyone working on practical problems in the field of polymers, including organic chemists, chemical engineers, polymer processers, polymer technologists, and both graduate and PhD students.
A guide to modifying and functionalizing the surfaces of polymers Surface Modification of Polymers is an essential guide to the myriad methods that can be employed to modify and functionalize the surfaces of polymers. The functionalization of polymer surfaces is often required for applications in sensors, membranes, medicinal devices, and others. The contributors?noted experts on the topic?describe the polymer surface in detail and discuss the internal and external factors that influence surface properties. This comprehensive guide to the most important methods for the introduction of new functionalities is an authoritative resource for everyone working in the field. This book explores many applications, including the plasma polymerization technique, organic surface functionalization by initiated chemical vapor deposition, photoinduced functionalization on polymer surfaces, functionalization of polymers by hydrolysis, aminolysis, reduction, oxidation, surface modification of nanoparticles, and many more. Inside, readers will find information on various applications in the biomedical field, food science, and membrane science. This important book: -Offers a range of polymer functionalization methods for biomedical applications, water filtration membranes, and food science -Contains discussions of the key surface modification methods, including plasma and chemical techniques, as well as applications for nanotechnology, environmental filtration, food science, and biomedicine -Includes contributions from a team of international renowned experts Written for polymer chemists, materials scientists, plasma physicists, analytical chemists, surface physicists, and surface chemists, Surface Modification of Polymers offers a comprehensive and application-oriented review of the important functionalization methods with a special focus on biomedical applications, membrane science, and food science.
A concise introductory text written from an applied angle, primarily for recent graduates now working in industry who haven't previously studied polymer chemistry. Available in the US from CRC Press. Annotation copyrighted by Book News, Inc., Portland, OR
The first concern of scientists who are interested in synthetic polymers has always been, and still is: How are they synthesized? But right after this comes the question: What have I made, and for what is it good? This leads to the important topic of the structure-property relations to which this book is devoted. Polymers are very large and very complicated systems; their character ization has to begin with the chemical composition, configuration, and con formation of the individual molecule. The first chapter is devoted to this broad objective. The immediate physical consequences, discussed in the second chapter, form the basis for the physical nature of polymers: the supermolecular interactions and arrangements of the individual macromolecules. The third chapter deals with the important question: How are these chemical and physical structures experimentally determined? The existing methods for polymer characterization are enumerated and discussed in this chapter. The following chapters go into more detail. For most applications-textiles, films, molded or extruded objects of all kinds-the mechanical and the thermal behaviors of polymers are of pre ponderant importance, followed by optical and electric properties. Chapters 4 through 9 describe how such properties are rooted in and dependent on the chemical structure. More-detailed considerations are given to certain particularly important and critical properties such as the solubility and permeability of polymeric systems. Macromolecules are not always the final goal of the chemist-they may act as intermediates, reactants, or catalysts. This topic is presented in Chapters 10 and 11.