Chebyshev and Fourier Spectral Methods

Chebyshev and Fourier Spectral Methods

Author: John P. Boyd

Publisher: Courier Corporation

Published: 2001-12-03

Total Pages: 690

ISBN-13: 0486411834

DOWNLOAD EBOOK

Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.


Spectral Methods

Spectral Methods

Author: Jie Shen

Publisher: Springer Science & Business Media

Published: 2011-08-25

Total Pages: 481

ISBN-13: 3540710418

DOWNLOAD EBOOK

Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.


Mathematics and the Aesthetic

Mathematics and the Aesthetic

Author: Nathalie Sinclair

Publisher: Springer Science & Business Media

Published: 2007-12-28

Total Pages: 299

ISBN-13: 0387381457

DOWNLOAD EBOOK

This collection of essays explores the ancient affinity between the mathematical and the aesthetic, focusing on fundamental connections between these two modes of reasoning and communicating. From historical, philosophical and psychological perspectives, with particular attention to certain mathematical areas such as geometry and analysis, the authors examine ways in which the aesthetic is ever-present in mathematical thinking and contributes to the growth and value of mathematical knowledge.


Numerical Analysis of Spectral Methods

Numerical Analysis of Spectral Methods

Author: David Gottlieb

Publisher: SIAM

Published: 1977-01-01

Total Pages: 167

ISBN-13: 0898710235

DOWNLOAD EBOOK

A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.


Spectral Methods for Incompressible Viscous Flow

Spectral Methods for Incompressible Viscous Flow

Author: Roger Peyret

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 438

ISBN-13: 1475765576

DOWNLOAD EBOOK

This well-written book explains the theory of spectral methods and their application to the computation of viscous incompressible fluid flow, in clear and elementary terms. With many examples throughout, the work will be useful to those teaching at the graduate level, as well as to researchers working in the area.


Spectral Methods And Their Applications

Spectral Methods And Their Applications

Author: Ben-yu Guo

Publisher: World Scientific

Published: 1998-05-05

Total Pages: 359

ISBN-13: 9814496642

DOWNLOAD EBOOK

This book presents the basic algorithms, the main theoretical results, and some applications of spectral methods. Particular attention is paid to the applications of spectral methods to nonlinear problems arising in fluid dynamics, quantum mechanics, weather prediction, heat conduction and other fields.The book consists of three parts. The first part deals with orthogonal approximations in Sobolev spaces and the stability and convergence of approximations for nonlinear problems, as the mathematical foundation of spectral methods. In the second part, various spectral methods are described, with some applications. It includes Fourier spectral method, Legendre spectral method, Chebyshev spectral method, spectral penalty method, spectral vanishing viscosity method, spectral approximation of isolated solutions, multi-dimensional spectral method, spectral method for high-order equations, spectral-domain decomposition method and spectral multigrid method. The third part is devoted to some recent developments of spectral methods, such as mixed spectral methods, combined spectral methods and spectral methods on the surface.


Spectral Methods in Chemistry and Physics

Spectral Methods in Chemistry and Physics

Author: Bernard Shizgal

Publisher: Springer

Published: 2015-01-07

Total Pages: 431

ISBN-13: 9401794545

DOWNLOAD EBOOK

This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficients in gases and other gas dynamical problems based on spectral and pseudospectral solutions of the Boltzmann equation. Radiative transfer in astrophysics and atmospheric science, and applications to space physics are discussed. The relaxation of initial non-equilibrium distributions to equilibrium for several different systems is studied with the Boltzmann and Fokker-Planck equations. The eigenvalue spectra of the linear operators in the Boltzmann, Fokker-Planck and Schrödinger equations are studied with spectral and pseudospectral methods based on non-classical orthogonal polynomials. The numerical methods referred to as the Discrete Ordinate Method, Differential Quadrature, the Quadrature Discretization Method, the Discrete Variable Representation, the Lagrange Mesh Method, and others are discussed and compared. MATLAB codes are provided for most of the numerical results reported in the book - see Link under 'Additional Information' on the the right-hand column.


Spectral Methods for Time-Dependent Problems

Spectral Methods for Time-Dependent Problems

Author: Jan S. Hesthaven

Publisher: Cambridge University Press

Published: 2007-01-11

Total Pages: 284

ISBN-13: 9780521792110

DOWNLOAD EBOOK

Spectral methods are well-suited to solve problems modeled by time-dependent partial differential equations: they are fast, efficient and accurate and widely used by mathematicians and practitioners. This class-tested 2007 introduction, the first on the subject, is ideal for graduate courses, or self-study. The authors describe the basic theory of spectral methods, allowing the reader to understand the techniques through numerous examples as well as more rigorous developments. They provide a detailed treatment of methods based on Fourier expansions and orthogonal polynomials (including discussions of stability, boundary conditions, filtering, and the extension from the linear to the nonlinear situation). Computational solution techniques for integration in time are dealt with by Runge-Kutta type methods. Several chapters are devoted to material not previously covered in book form, including stability theory for polynomial methods, techniques for problems with discontinuous solutions, round-off errors and the formulation of spectral methods on general grids. These will be especially helpful for practitioners.