Synthesis, Characterization, and Theory of Polymeric Networks and Gels

Synthesis, Characterization, and Theory of Polymeric Networks and Gels

Author: Shaul M. Aharoni

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 354

ISBN-13: 1461530164

DOWNLOAD EBOOK

Polymer science is a technology-driven science. More often than not, technological breakthroughs opened the gates to rapid fundamental and theoretical advances, dramatically broadening the understanding of experimental observations, and expanding the science itself. Some of the breakthroughs involved the creation of new materials. Among these one may enumerate the vulcanization of natural rubber, the derivatization of cellulose, the giant advances right before and during World War II in the preparation and characterization of synthetic elastomers and semi crystalline polymers such as polyesters and polyamides, the subsequent creation of aromatic high-temperature resistant amorphous and semi-crystal line polymers, and the more recent development of liquid-crystalline polymers mostly with n~in-chain mesogenicity. other breakthroughs involve the development of powerful characterization techniques. Among the recent ones, the photon correlation spectroscopy owes its success to the advent of laser technology, small angle neutron scattering evolved from n~clear reactors technology, and modern solid-state nuclear magnetic resonance spectroscopy exists because of advances in superconductivity. The growing need for high modulus, high-temperature resistant polymers is opening at present a new technology, that of more or less rigid networks. The use of such networks is rapidly growing in applications where they are used as such or where they serve as matrices for fibers or other load bearing elements. The rigid networks are largely aromatic. Many of them are prepared from multifunctional wholly or almost-wholly aromatic kernels, while others contain large amount of stiff difunctional residus leading to the presence of many main-chain "liquid-crystalline" segments in the "infinite" network.


Polymer Networks

Polymer Networks

Author: A. Chompff

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 494

ISBN-13: 1475762100

DOWNLOAD EBOOK

For several decades, polymer science has sought to rationalize the mechanical and thermodynamic properties of polymer networks largely within the framework of statistical thermodynamics. Much of this effort has been directed toward the rubbery rather than the glassy state. It is generally assumed that networks possess an av erage composition to which average properties may be assigned; from such a continuum view, a powerful analysis of such properties as modulus, swelling, birefringence and thermoelasticity has emerged. In the years following the rise of polymer characterization (the late 40's and early 50's), many scientists began to study ap parent relations between the properties of linear polymer molecules and the networks obtainable therefrom. This search was also stimu lated by the wide range of applications of polymer networks in com mercial elastomers, thermosets and coatings. Frequently, these data were confidently matched with curves obtained from statisti cally describable models of networks of ghost chains, uniformly distributed in space. More recently, it has become apparent that polymer chains in networks are not as ideal as assumed in the formulation of statis tical models, and there has been a shift in emphasis towards the less than ideal, perturbed and possibly inhomogeneous networks which are more frequently encountered in practice. The continuum approach, however, had to be developed before inhomogeneous systems could be described; the present volume, therefore, contains both views.


Characterization of Polymer Blends

Characterization of Polymer Blends

Author: Sabu Thomas

Publisher: John Wiley & Sons

Published: 2015-02-09

Total Pages: 972

ISBN-13: 3527331530

DOWNLOAD EBOOK

Filling the gap for a reference dedicated to the characterization of polymer blends and their micro and nano morphologies, this book provides comprehensive, systematic coverage in a one-stop, two-volume resource for all those working in the field. Leading researchers from industry and academia, as well as from government and private research institutions around the world summarize recent technical advances in chapters devoted to their individual contributions. In so doing, they examine a wide range of modern characterization techniques, from microscopy and spectroscopy to diffraction, thermal analysis, rheology, mechanical measurements and chromatography. These methods are compared with each other to assist in determining the best solution for both fundamental and applied problems, paying attention to the characterization of nanoscale miscibility and interfaces, both in blends involving copolymers and in immiscible blends. The thermodynamics, miscibility, phase separation, morphology and interfaces in polymer blends are also discussed in light of new insights involving the nanoscopic scale. Finally, the authors detail the processing-morphology-property relationships of polymer blends, as well as the influence of processing on the generation of micro and nano morphologies, and the dependence of these morphologies on the properties of blends. Hot topics such as compatibilization through nanoparticles, miscibility of new biopolymers and nanoscale investigations of interfaces in blends are also addressed. With its application-oriented approach, handpicked selection of topics and expert contributors, this is an outstanding survey for anyone involved in the field of polymer blends for advanced technologies.