Stroboscopic Imaging Interferometer for MEMS Performance Measurement

Stroboscopic Imaging Interferometer for MEMS Performance Measurement

Author:

Publisher:

Published: 2007

Total Pages: 21

ISBN-13:

DOWNLOAD EBOOK

The insertion of MEMS components into aerospace systems requires advanced testing to characterize performance in a space environment. Here we report a novel stroboscopic interferometer test system that measures nanometer-scale displacements of moving MEMS devices. By combining video imagery and phase-shift interferometry with an environmental chamber, rapid visualization of the dynamic device motion under the actual operational conditions can be measured. The utility of this system is further enhanced by integrating the interferometer onto the chamber window, allowing for robust interferometric testing in a noisy environment without requiring a floating optical table. To demonstrate these unique capabilities, we present the time-resolved images of an electrostatically actuated MEMS cantilevered beam showing the first- through sixth-order plate modes under vacuum.


Acousto Optic Modulated Stroboscopic Interferometer for Comprehensive Characterization of Microstructure

Acousto Optic Modulated Stroboscopic Interferometer for Comprehensive Characterization of Microstructure

Author: Murali Manohar Pai Screenivasan

Publisher:

Published: 2008

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Mechanical and electro-mechanical advancements to the nano-scale require comprehensive and systematic testing at the micro-scale in order to understand the underlying influences that define the micro/nano-device both from fabrication and operational points of view. In this regard, surface metrology measurements, as well as static and dynamic characteristics will become very important and need to be experimentally determined to describe the system fully. These integrated tests are difficult to be implemented at dimensions where interaction with the device can seriously impact the results obtained. Hence, a characterization method to obtain valid experimental information without interfering with the functionality of the device needs to be developed. In this work, a simple yet viable Acousto Optic Modulated Stroboscopic Interferometer (AOMSI) was developed using a frequency stabilized Continuous Wave (CW) laser together with an Acousto Optic Modulator for comprehensive mechanical characterization to obtain surface, static and dynamic properties of micro-scale structures. An optimized methodology for measurement was established and sensitivity analysis was conducted. Being a whole-field technique, unlike single point or scanning interferometers, AOMSI can provide details of surface properties as well as displacements due to static/dynamic loads and modal profiles. Experiments for surface profiling were carried out on a micro-mirror, along with 2D and 3D profile measurements. The ability of AOMSI to perform dynamic measurements was tested on Micro-Cantilevers and on AFM (Atomic Force Microscopy) cantilevers. The resolution of AOMSI was identified as 10nms. The results for static deflections, 1 st and 2 nd natural frequencies and mode shapes were found to be in good agreement with results from the developed theoretical model and manufacturers specifications. The approach is a novel approach to investigate the surface, static and dynamic behavior of microstructures using a single interferometer.


Handbook of Silicon Based MEMS Materials and Technologies

Handbook of Silicon Based MEMS Materials and Technologies

Author: Markku Tilli

Publisher: Elsevier

Published: 2020-04-17

Total Pages: 1028

ISBN-13: 012817787X

DOWNLOAD EBOOK

Handbook of Silicon Based MEMS Materials and Technologies, Third Edition is a comprehensive guide to MEMS materials, technologies, and manufacturing with a particular emphasis on silicon as the most important starting material used in MEMS. The book explains the fundamentals, properties (mechanical, electrostatic, optical, etc.), materials selection, preparation, modeling, manufacturing, processing, system integration, measurement, and materials characterization techniques of MEMS structures. The third edition of this book provides an important up-to-date overview of the current and emerging technologies in MEMS making it a key reference for MEMS professionals, engineers, and researchers alike, and at the same time an essential education material for undergraduate and graduate students. Provides comprehensive overview of leading-edge MEMS manufacturing technologies through the supply chain from silicon ingot growth to device fabrication and integration with sensor/actuator controlling circuits Explains the properties, manufacturing, processing, measuring and modeling methods of MEMS structures Reviews the current and future options for hermetic encapsulation and introduces how to utilize wafer level packaging and 3D integration technologies for package cost reduction and performance improvements Geared towards practical applications presenting several modern MEMS devices including inertial sensors, microphones, pressure sensors and micromirrors


Optical MEMS, Nanophotonics, and Their Applications

Optical MEMS, Nanophotonics, and Their Applications

Author: Guangya Zhou

Publisher: CRC Press

Published: 2017-12-14

Total Pages: 548

ISBN-13: 1351647601

DOWNLOAD EBOOK

This book covers device design fundamentals and system applications in optical MEMS and nanophotonics. Expert authors showcase examples of how fusion of nanoelectromechanical (NEMS) with nanophotonic elements is creating powerful new photonic devices and systems including MEMS micromirrors, MEMS tunable filters, MEMS-based adjustable lenses and apertures, NEMS-driven variable silicon nanowire waveguide couplers, and NEMS tunable photonic crystal nanocavities. The book also addresses system applications in laser scanning displays, endoscopic systems, space telescopes, optical telecommunication systems, and biomedical implantable systems. Presents efforts to scale down mechanical and photonic elements into the nano regime for enhanced performance, faster operational speed, greater bandwidth, and higher level of integration. Showcases the integration of MEMS and optical/photonic devices into real commercial products. Addresses applications in optical telecommunication, sensing, imaging, and biomedical systems. Prof. Vincent C. Lee is Associate Professor in the Department of Electrical and Computer Engineering, National University of Singapore. Prof. Guangya Zhou is Associate Professor in the Department of Mechanical Engineering at National University of Singapore.


Optical Inspection of Microsystems, Second Edition

Optical Inspection of Microsystems, Second Edition

Author: Wolfgang Osten

Publisher: CRC Press

Published: 2019-06-21

Total Pages: 656

ISBN-13: 0429532652

DOWNLOAD EBOOK

Where conventional testing and inspection techniques fail at the microscale, optical techniques provide a fast, robust, noninvasive, and relatively inexpensive alternative for investigating the properties and quality of microsystems. Speed, reliability, and cost are critical factors in the continued scale-up of microsystems technology across many industries, and optical techniques are in a unique position to satisfy modern commercial and industrial demands. Optical Inspection of Microsystems, Second Edition, extends and updates the first comprehensive survey of the most important optical measurement techniques to be successfully used for the inspection of microsystems. Under the guidance of accomplished researcher Wolfgang Osten, expert contributors from industrial and academic institutions around the world share their expertise and experience with techniques such as image processing, image correlation, light scattering, scanning probe microscopy, confocal microscopy, fringe projection, grid and moire techniques, interference microscopy, laser-Doppler vibrometry, digital holography, speckle metrology, spectroscopy, and sensor fusion technologies. They also examine modern approaches to data acquisition and processing, such as the determination of surface features and the estimation of uncertainty of measurement results. The book emphasizes the evaluation of various system properties and considers encapsulated components to increase quality and reliability. Numerous practical examples and illustrations of optical testing reinforce the concepts. Supplying effective tools for increased quality and reliability, this book Provides a comprehensive, up-to-date overview of optical techniques for the measurement and inspection of microsystems Discusses image correlation, displacement and strain measurement, electro-optic holography, and speckle metrology techniques Offers numerous practical examples and illustrations Includes calibration of optical measurement systems for the inspection of MEMS Presents the characterization of dynamics of MEMS


Optical Inspection of Microsystems

Optical Inspection of Microsystems

Author: Wolfgang Osten

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 524

ISBN-13: 1420019163

DOWNLOAD EBOOK

Where conventional testing and inspection techniques fail at the micro-scale, optical techniques provide a fast, robust, and relatively inexpensive alternative for investigating the properties and quality of microsystems. Speed, reliability, and cost are critical factors in the continued scale-up of microsystems technology across many industries, and optical techniques are in a unique position to satisfy modern commercial and industrial demands. Optical Inspection of Microsystems is the first comprehensive, up-to-date survey of the most important and widely used full-field optical metrology and inspection technologies. Under the guidance of accomplished researcher Wolfgang Osten, expert contributors from industrial and academic institutions around the world share their expertise and experience with techniques such as image correlation, light scattering, scanning probe microscopy, confocal microscopy, fringe projection, grid and moiré techniques, interference microscopy, laser Doppler vibrometry, holography, speckle metrology, and spectroscopy. They also examine modern approaches to data acquisition and processing. The book emphasizes the evaluation of various properties to increase reliability and promote a consistent approach to optical testing. Numerous practical examples and illustrations reinforce the concepts. Supplying advanced tools for microsystem manufacturing and characterization, Optical Inspection of Microsystems enables you to reach toward a higher level of quality and reliability in modern micro-scale applications.