Legume Nitrogen Fixation in a Changing Environment

Legume Nitrogen Fixation in a Changing Environment

Author: Saad Sulieman

Publisher: Springer

Published: 2015-04-24

Total Pages: 136

ISBN-13: 3319062123

DOWNLOAD EBOOK

The world population will grow more rapidly during the few coming years. This must be accompanied by a parallel increase in the agricultural production to secure adequate food. Sustainability considerations mandate that alternatives to chemical nitrogen fertilizers must be urgently sought. Biological nitrogen (N2) fixation, a microbiological process which converts atmospheric N2 into a plant-usable form, offers this alternative. Among these renewable sources, N2-fixing legumes offer an economically attractive and ecologically sound means of reducing external inputs and improving internal resources. Environmental factors such as drought, elevated temperature, salinity, soil acidity and rising CO2 are known to dramatically affect the symbiotic process and thus play a part in determining the actual amount of nitrogen fixed by a given legume in the field. Understanding how nodule N2 fixation responds to the environment is crucial for improving legume production and maintaining sustainability in the context of global change. In this thoughtful and provocative new Brief, we provide critical information on how current and projected future changes in the environment will affect legume growth and their symbiotic N2 fixing capabilities. Each section reviews the main drivers of environmental change on the legume performance that include drought, elevated temperature, salinity and rising CO2, and soil acidity. Importantly we discuss the molecular approaches to the analysis of the stress response in legumes and the possible biotechnological strategies to overcome their detrimental effects.


Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism

Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism

Author: C.H. Foyer

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 300

ISBN-13: 0306481383

DOWNLOAD EBOOK

According to many textbooks, carbohydrates are the photosynthesis and mitochondrial respiration fluctuate in a circadian manner in almost every unique final products of plant photosynthesis. However, the photoautotrophic production of organic organism studied. In addition, external triggers and environmental influences necessitate precise and nitrogenous compounds may be just as old, in appropriate re-adjustment of relative flux rates, to evolutionary terms, as carbohydrate synthesis. In the algae and plants of today, the light-driven assimilation prevent excessive swings in energy/resource provision of nitrogen remains a key function, operating and use. This requires integrated control of the alongside and intermeshing with photosynthesis and expression and activity of numerous key enzymes in respiration. Photosynthetic production of reduced photosynthetic and respiratory pathways, in order to carbon and its reoxidation in respiration are necessary co-ordinate carbon partioning and nitrogen assim- ation. to produce both the energy and the carbon skeletons required for the incorporation of inorganic nitrogen This volume has two principal aims. The first is to into amino acids. Conversely, nitrogen assimilation provide a comprehensive account of the very latest developments in our understanding of how green is required to sustain the output of organic carbon cells reductively incorporate nitrate and ammonium and nitrogen. Together, the sugars and amino acids into the organic compounds required for growth.


Chemicals via Higher Plant Bioengineering

Chemicals via Higher Plant Bioengineering

Author: Fereidoon Shahidi

Publisher: Springer Science & Business Media

Published: 1999-05-31

Total Pages: 296

ISBN-13: 9780306461170

DOWNLOAD EBOOK

Food and raw material for its production was generally produced via the traditional agriculture. On the other hand, novel chemicals were manufactured in the laboratory or extracted from plant and animal sources. However, as the world population is steadily in creasing, there is a decrease in traditional agriculture productivity and concerns are also expressed over the damage inflicted to the environment and restrictions that might be en forced in food production. At the same time, there is an increasing demand for high qual ity agricultural products as well as for food ingredients related to both the traditional or newly discovered nutrients or phytochemicals. Trends and developments,~n the area of plant biotechnology and bioengineering has allowed manipulation of genes' !lnd/or insertion of new genes, thus production of trans genic plants. Starting from the introduction of agronomic traits, particularly stress resis tance to diverse environmental factors, process and sensory characteristics, food quality and production of novel varieties of plant-based products through genetic engineering, biotechnology is changing the,;agriculture and the concept of production of plant-ba~~d raw materials. Increasing attention is being paid on research for production of plants !pat can provide a wide array of food and non-food products. Perhaps the first non-food pro,d uct that plant biotechnology would achieve is production of large scale custom-designed industrial oils, but the list of chemicals is long, ranging" from oils and specific triacyl glycerols to biopolymers, enzymes, blood components, amo~g others.


Production of Plant Derived Natural Compounds through Hairy Root Culture

Production of Plant Derived Natural Compounds through Hairy Root Culture

Author: Sonia Malik

Publisher: Springer

Published: 2017-12-01

Total Pages: 225

ISBN-13: 3319697692

DOWNLOAD EBOOK

This book provides the latest information about hairy root culture and its several applications, with special emphasis on potential of hairy roots for the production of bioactive compounds. Due to high growth rate as well as biochemical and genetic stability, it is possible to study the metabolic pathways related to production of bioactive compounds using hairy root culture. Chapters discuss the feasibility of hairy roots for plant derived natural compounds. Advantages and difficulties of hairy roots for up-scaling studies in bioreactors are included as well as successful examples of hairy root culture of plant species producing bioactive compounds used in food, flavors and pharmaceutical industry. This book is a valuable resource for researchers and students working on the area of plant natural products, phytochemistry, plant tissue culture, medicines, and drug discovery.