The present work deals with the characterisation and multi-scale modelling of the large-strain response of ternary polymer blends. In a homogenised constitutive modelling approach, particularly the deformation behaviour featuring plastic dilatancy is investigated. Concerning the micromechanical modelling, constitutive models are proposed for the blends' individual phases and compared regarding their capabilities to capture the composition-dependent fracture toughness in unit cell models.
This work proposes a new numerical approach for analyzing the behavior of fiber-reinforced materials, which have gained popularity in various applications. The approach combines theories and methods to model the fracture behavior of the polymeric matrix and the embedded fibers separately, and includes a modified plasticity model that considers the temperature-dependent growth of voids. Tests are conducted to explore different types and sequences of failure in long fiber-reinforced polymers.
Proposed in the early 1990s, the enhanced assumed strain (EAS) method is one of the probably most successful mixed finite element methods for solid mechanics. This cumulative dissertation gives a comprehensive overview of previous publications on that method and covers recent improvements for EAS elements. In particular, we describe three key issues of standard EAS elements and develop corresponding solutions.
This work is about the inverse dynamics of underactuated flexible mechanical systems governed by quasi-linear hyperbolic partial differential equations subjected to time-varying Dirichlet boundary conditions that are enforced by unknown, spatially disjunct, hence non-collocated Neumann boundary conditions.
Polymer Yearbook 13 brings together reviews and information on the progress of polymer science worldwide, including useful and topical information such as a list of new publications in polymer science and a compilation of dissertation abstracts. This volume includes reviews of key aspects of polymer science, including contributions from Russia, and details of important publications., This volume also contains reviews on state-of-the-art Japanese research presented at the annual Spring and Fall meetings of the Japanese Polymer Science Society. The aim of this section is to make information on the progress of Japanese polymer science, and on topics of current interest to polymer scientists in Japan, more easily available worldwide.
Nowadays, it is quite easy to see various applications of fibrous composites, functionally graded materials, laminated composite, nano-structured reinforcement, morphing composites, in many engineering fields, such as aerospace, mechanical, naval and civil engineering. The increase in the use of composite structures in different engineering practices justify the present international meeting where researches from every part of the globe can share and discuss the recent advancements regarding the use of standard structural components within advanced applications such as buckling, vibrations, repair, reinforcements, concrete, composite laminated materials and more recent metamaterials. For this reason, the establishment of this 19th edition of International Conference on Composite Structures has appeared appropriate to continue what has been begun during the previous editions. ICCS wants to be an occasion for many researchers from each part of the globe to meet and discuss about the recent advancements regarding the use of composite structures, sandwich panels, nanotechnology, bio-composites, delamination and fracture, experimental methods, manufacturing and other countless topics that have filled many sessions during this conference. As a proof of this event, which has taken place in Porto (Portugal), selected plenary and keynote lectures have been collected in the present book.
This book, consisting of 21 articles, including three review papers, written by research groups of experts in the field, considers recent research on reinforced polymer composites. Most of them relate to the fiber-reinforced polymer composites, which are a real hot topic in the field. Depending on the reinforcing fiber nature, such composites are divided into synthetic and natural fiber-reinforced ones. Synthetic fibers, such as carbon, glass, or basalt, provide more stiffness, while natural fibers, such as jute, flax, bamboo, kenaf, and others, are inexpensive and biodegradable, making them environmentally friendly. To acquire the benefits of design flexibility and recycling possibilities, natural reinforcers can be hybridized with small amounts of synthetic fibers to make them more desirable for technical applications. Elaborated composites have great potential as structural materials in automotive, marine and aerospace application, as fire resistant concrete, in bridge systems, as mechanical gear pair, as biomedical materials for dentistry and orthopedic application and tissue engineering, as well as functional materials such as proton-exchange membranes, biodegradable superabsorbent resins and polymer electrolytes.
Glassy and ductile plastics require toughening to improve their range of usefulness, particularly for engineering applications. Rubber-modified, toughened thermoplastics are already in widespread use. This review sets out to introduce this field and describe the state-of-the-art. An additional indexed section containing several hundred abstracts from the Rapra Polymer Library database gives useful references for further reading.