Ultrashort Laser Pulse Phenomena

Ultrashort Laser Pulse Phenomena

Author: Jean-Claude Diels

Publisher: Elsevier

Published: 2006-09-21

Total Pages: 675

ISBN-13: 0080466400

DOWNLOAD EBOOK

Ultrashort Laser Pulse Phenomena, Second Edition serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond ("faster than electronics") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic concepts and how they apply to the design of particular sources (dye lasers, solid state lasers, semiconductor lasers, fiber lasers, and sources based on frequency conversion). - Provides an easy to follow guide through "faster than electronics" probing and detection methods - THE manual on designing and constructing femtosecond systems and experiments - Discusses essential technology for applications in micro-machining, femtochemistry, and medical imaging


Coherence and Ultrashort Pulse Laser Emission

Coherence and Ultrashort Pulse Laser Emission

Author: F. J. Duarte

Publisher: BoD – Books on Demand

Published: 2010-12-30

Total Pages: 702

ISBN-13: 9533072423

DOWNLOAD EBOOK

In this volume, recent contributions on coherence provide a useful perspective on the diversity of various coherent sources of emission and coherent related phenomena of current interest. These papers provide a preamble for a larger collection of contributions on ultrashort pulse laser generation and ultrashort pulse laser phenomena. Papers on ultrashort pulse phenomena include works on few cycle pulses, high-power generation, propagation in various media, to various applications of current interest. Undoubtedly, Coherence and Ultrashort Pulse Emission offers a rich and practical perspective on this rapidly evolving field.


Extreme Photonics & Applications

Extreme Photonics & Applications

Author: Trevor Hall

Publisher: Springer

Published: 2009-11-24

Total Pages: 259

ISBN-13: 9048136342

DOWNLOAD EBOOK

"Extreme Photonics & Applications" arises from the 2008 NATO Advanced Study Institute in Laser Control & Monitoring in New Materials, Biomedicine, Environment, Security and Defense. Leading experts in the manipulation of light offered by recent advances in laser physics and nanoscience were invited to give lectures in their fields of expertise and participate in discussions on current research, applications and new directions. The sum of their contributions to this book is a primer for the state of scientific knowledge and the issues within the subject of photonics taken to the extreme frontiers: molding light at the ultra-finest scales, which represents the beginning of the end to limitations in optical science for the benefit of 21st Century technological societies. Laser light is an exquisite tool for physical and chemical research. Physicists have recently developed pulsed lasers with such short durations that one laser shot takes the time of one molecular vibration or one electron rotation in an atom, which makes it possible to observe their internal electronic structure, thereby enabling the study of physical processes and new chemical reactions. In parallel, advances in micro- and nano-structured photonic materials allow the precise manipulation of light on its natural scale of a wavelength. Photonic crystals, plasmons and related metamaterials - composed of subwavelength nanostructures - permit the manipulation of their dispersive properties and have allowed the experimental confirmation of bizarre new effects such as slow light and negative refraction. These advances open a vista on a new era in which it is possible to build lasers and engineer materials to control and use photons as precisely as it is already possible to do with electrons. http://www.photonics.uottawa.ca/nato-asi-2008/


Applications of High-Field and Short Wavelength Sources

Applications of High-Field and Short Wavelength Sources

Author: Louis DiMauro

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 296

ISBN-13: 1475792417

DOWNLOAD EBOOK

The Optical Society of America Conference on Applications of High Fields and Short Wavelength Sources, held in Santa Fe, New Mexico, USA, from March 20-22, 1997, was an exceptionally exciting conference. This conference was the seventh in a series of topical con ferences, held every two years, which are devoted to the generation and application of high field and short wavelength sources. The meeting was truly international in scope, with equal participation from both within and outside of the US. In the past two years, there has been dramatic progress in both laser and x-ray coher ent sources, both fundamental and applied. The 1997 meeting highlighted these advances, which are summarized in sections 1 and 2 of this volume. Terawatt-class lasers are now avail able in the UV or at high repetition rates. Michael Perry (LLNL) presented a keynote talk on petawatt class lasers and their applications in inertial confinement fusion, while Jorge Rocca (Colorado State University) presented a keynote talk on tabletop soft-x-ray lasers. Genera tion and measurement techniques are becoming very sophisticated throughout the UV and x ray region of the spectrum, and coherent sources have been extended to wavelengths below 30A. Phase control in the x-ray region is also now possible, and new phase-matching schemes in the UV have been experimentally demonstrated. It is clear that a new field of x-ray nonlin ear optics will deveiop rapidly over the next few years.


Photoionization and Photo-Induced Processes in Mass Spectrometry

Photoionization and Photo-Induced Processes in Mass Spectrometry

Author: Ralf Zimmermann

Publisher: John Wiley & Sons

Published: 2021-07-06

Total Pages: 448

ISBN-13: 3527335102

DOWNLOAD EBOOK

Provides comprehensive coverage of laser-induced ionization processes for mass spectrometry analysis Drawing on the expertise of the leading academic and industrial research groups involved in the development of photoionization methods for mass spectrometry, this reference for analytical scientists covers both the theory and current applications of photo-induced ionization processes. It places widely used techniques such as MALDI side by side with more specialist approaches such as REMPI and RIMS, and discusses leading edge developments in ultrashort laser pulse desorption, to give readers a complete picture of the state of the technology. Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications starts with a complete overview of the fundamentals of the technique, covering the basics of the gas phase ionization as well as those of laser desorption and ablation, pulse photoionization, and single particle ionization. Numerous application examples from different analytical fields are described that showcase the power and the wide scope of photo ionization in mass spectrometry. -The first general reference book on photoionization techniques for mass spectrometry -Examines technologies and applications of gas phase resonance-enhanced multiphoton ionization mass spectrometry (REMPI-MS) and gas phase resonance ionization mass spectrometry (RIMS) -Provides complete coverage of popular techniques like MALDI -Discusses the current and potential applications of each technology, focusing on process and environmental analysis Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications is an excellent book for spectroscopists, analytical chemists, photochemists, physical chemists, and laser specialists.


Optical Technologies for Extreme-Ultraviolet and Soft X-ray Coherent Sources

Optical Technologies for Extreme-Ultraviolet and Soft X-ray Coherent Sources

Author: Federico Canova

Publisher: Springer

Published: 2015-08-17

Total Pages: 205

ISBN-13: 3662474433

DOWNLOAD EBOOK

The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.


Ultrafast Optics IV

Ultrafast Optics IV

Author: Ferenc Krausz

Publisher: Springer

Published: 2012-08-10

Total Pages: 482

ISBN-13: 0387347569

DOWNLOAD EBOOK

The papers in this volume cover the major areas of research activity in the field of ultrafast optics at the present time, and they have been selected to provide an overview of the current state of the art. The purview of the field is the methods for the generation, amplification, and characterization of electromagnetic pulses with durations from the pieo-to the attosecond range, as well as the technical issues surrounding the application of these pulses in physics, chemistry, and biology. The contributions were solicited from the participants in the Ultrafast Optics IV Conference, held in Vienna, Austria, in June 2003. The purpose of the conference is similar to that of this book: to provide a forum for the latest advances in ultrafast optical technology. Ultrafast light sources provide a means to observe and manipulate events on the scale of atomic and molecular dynamics. This is possible either through appropriate shaping of the time-dependent electrie field, or through the ap plication of fields whose strength is comparable to the binding forces of the electrons in atoms and molecules. Recent advances discussed here include the generation of pulses shorter than two optical cycles, and the ability to measure and to shape them in all degrees of freedom with unprecedented 2 21 2 precision, and to amplify them to the Zettawatt/cm (10 W /cm ) range.


Ultrafast Dynamics Driven by Intense Light Pulses

Ultrafast Dynamics Driven by Intense Light Pulses

Author: Markus Kitzler

Publisher: Springer

Published: 2015-07-24

Total Pages: 385

ISBN-13: 3319201735

DOWNLOAD EBOOK

This book documents the recent vivid developments in the research field of ultrashort intense light pulses for probing and controlling ultrafast dynamics. The recent fascinating results in studying and controlling ultrafast dynamics in ever more complicated systems such as (bio-)molecules and structures of meso- to macroscopic sizes on ever shorter time-scales are presented. The book is written by some of the most eminent experimental and theoretical experts in the field. It covers the new groundbreaking research directions that were opened by the availability of new light sources such as fully controlled intense laser fields with durations down to a single oscillation cycle, short-wavelength laser-driven attosecond pulses and intense X-ray pulses from the upcoming free electron lasers. These light sources allowed the investigation of dynamics in atoms, molecules, clusters, on surfaces and very recently also in nanostructures and solids in new regimes of parameters which, in turn, led to the identification of completely new dynamics and methods for controlling it. Example topics covered by this book include the study of ultrafast processes in large molecules using attosecond pulses, control of ultrafast electron dynamics in solids with shaped femtosecond laser pulses, light-driven ultrafast plasmonic processes on surfaces and in nanostructures as well as research on atomic and molecular systems under intense X-ray radiation. This book is equally helpful for people who would like to step into this field (e.g. young researchers), for whom it provides a broad introduction, as well as for already experienced researchers who may enjoy the exhaustive discussion that covers the research on essentially all currently studied objects and with all available ultrafast pulse sources.