The Chaotic Solar Cycle

The Chaotic Solar Cycle

Author: Arnold Hanslmeier

Publisher: Springer Nature

Published: 2020-11-30

Total Pages: 228

ISBN-13: 9811598215

DOWNLOAD EBOOK

This book offers an overview of solar physics with a focus on solar activity, particularly the activity cycle. It is known that solar activity varies periodically, but there are also phases of intermittency, such as the Maunder minimum, during which solar activity is very low or high over several decades. The book provides a brief introduction to chaos theory and investigates solar activity in terms of its chaotic behavior. It also discusses how intermittent phases of solar activity have affected and can affect Earth’s climate and long-term space weather, and reviews the underlying theories relating to the solar dynamo mechanism. Furthermore, each chapter includes references to scientific literature (review articles and papers) so that readers can delve deeper into the subjects covered. This richly illustrated book will appeal to a wide readership, and is also useful as a textbook for courses in solar physics and astrophysics.


Predictability of Chaotic Dynamics

Predictability of Chaotic Dynamics

Author: Juan C. Vallejo

Publisher: Springer Nature

Published: 2019-10-25

Total Pages: 196

ISBN-13: 3030286304

DOWNLOAD EBOOK

This book is primarily concerned with the computational aspects of predictability of dynamical systems - in particular those where observations, modeling and computation are strongly interdependent. Unlike with physical systems under control in laboratories, in astronomy it is uncommon to have the possibility of altering the key parameters of the studied objects. Therefore, the numerical simulations offer an essential tool for analysing these systems, and their reliability is of ever-increasing interest and importance. In this interdisciplinary scenario, the underlying physics provide the simulated models, nonlinear dynamics provides their chaoticity and instability properties, and the computer sciences provide the actual numerical implementation. This book introduces and explores precisely this link between the models and their predictability characterization based on concepts derived from the field of nonlinear dynamics, with a focus on the strong sensitivity to initial conditions and the use of Lyapunov exponents to characterize this sensitivity. This method is illustrated using several well-known continuous dynamical systems, such as the Contopoulos, Hénon-Heiles and Rössler systems. This second edition revises and significantly enlarges the material of the first edition by providing new entry points for discussing new predictability issues on a variety of areas such as machine decision-making, partial differential equations or the analysis of attractors and basins. Finally, the parts of the book devoted to the application of these ideas to astronomy have been greatly enlarged, by first presenting some basics aspects of predictability in astronomy and then by expanding these ideas to a detailed analysis of a galactic potential.


Chaotic Climate Dynamics

Chaotic Climate Dynamics

Author: A. Selvam

Publisher: Luniver Press

Published: 2007-08

Total Pages: 157

ISBN-13: 1905986076

DOWNLOAD EBOOK

Atmosphere is a chaotic system. As such it is inherently unpredictable. The book applies chaos theory to understand and predict climate systems. Author presents a cell dynamical system model for turbulent fluid flows. The model envisages the irregular space-time fluctuations of the atmospheric flow pattern generated as a consequence of the superimposition of a continuum of eddies. The natural space-time variability is quantified in terms of the universal inverse power-law form of the statistical normal distribution. A range of possible applications of the cell dynamical system model for weather and climate system is discussed. The book provides a comprehensive reference material for scientists and academicians working in the field of atmospheric sciences and related topics.


The Origin and Dynamics of Solar Magnetism

The Origin and Dynamics of Solar Magnetism

Author: M.J. Thompson

Publisher: Springer Science & Business Media

Published: 2009-05-01

Total Pages: 424

ISBN-13: 1441902392

DOWNLOAD EBOOK

Starting in 1995 numerical modeling of the Earth’s dynamo has ourished with remarkable success. Direct numerical simulation of convection-driven MHD- ow in a rotating spherical shell show magnetic elds that resemble the geomagnetic eld in many respects: they are dominated by the axial dipole of approximately the right strength, they show spatial power spectra similar to that of Earth, and the magnetic eld morphology and the temporal var- tion of the eld resembles that of the geomagnetic eld (Christensen and Wicht 2007). Some models show stochastic dipole reversals whose details agree with what has been inferred from paleomagnetic data (Glatzmaier and Roberts 1995; Kutzner and Christensen 2002; Wicht 2005). While these models represent direct numerical simulations of the fundamental MHD equations without parameterized induction effects, they do not match actual pla- tary conditions in a number of respects. Speci cally, they rotate too slowly, are much less turbulent, and use a viscosity and thermal diffusivity that is far too large in comparison to magnetic diffusivity. Because of these discrepancies, the success of geodynamo models may seem surprising. In order to better understand the extent to which the models are applicable to planetary dynamos, scaling laws that relate basic properties of the dynamo to the fundamental control parameters play an important role. In recent years rst attempts have been made to derive such scaling laws from a set of numerical simulations that span the accessible parameter space (Christensen and Tilgner 2004; Christensen and Aubert 2006).


Topology and Dynamics of Chaos

Topology and Dynamics of Chaos

Author: Christophe Letellier

Publisher: World Scientific

Published: 2013

Total Pages: 362

ISBN-13: 9814434868

DOWNLOAD EBOOK

The book surveys how chaotic behaviors can be described with topological tools and how this approach occurred in chaos theory. Some modern applications are included. The contents are mainly devoted to topology, the main field of Robert Gilmore's works in dynamical systems. They include a review on the topological analysis of chaotic dynamics, works done in the past as well as the very latest issues. Most of the contributors who published during the 90's, including the very well-known scientists Otto RAssler, Ren(r) Lozi and Joan Birman, have made a significant impact on chaos theory, discrete chaos, and knot theory, respectively. Very few books cover the topological approach for investigating nonlinear dynamical systems. The present book will provide not only some historical OCo not necessarily widely known OCo contributions (about the different types of chaos introduced by RAssler and not just the RAssler attractor; Gumowski and Mira's contributions in electronics; Poincar(r)'s heritage in nonlinear dynamics) but also some recent applications in laser dynamics, biology,


Multiperiodicity, Chaos, and Intermittency in a Reduced Model of the Solar Cycle

Multiperiodicity, Chaos, and Intermittency in a Reduced Model of the Solar Cycle

Author: Paul Charbonneau

Publisher:

Published: 2001

Total Pages: 20

ISBN-13:

DOWNLOAD EBOOK

In a recent paper, Durney (2000) has discussed a physically plausible procedure whereby the dynamo equations describing magnetic field regeneration in Babcock-Leighton models of the solar cycle can be reduced to a one-dimensional iterative map. This procedure is used here to investigate the behavior of various dynamo-inspired maps. Durney's explanation of the so-called odd-even effect in sunspot cycle peak amplitudes, which he ascribed to a period-2 limit cycle, is found to be robust with respect the choice of nonlinearity defining the map, and to the action of strong stochastic forcing. In fact, even maps without limit cycles are found to show a strong odd-even signal in the presence of forcing. Some of the stochastically forced maps are found to exhibit a form of on-off intermittency, with periods of activity separated by quiescent phases of low cycle amplitudes. In one such map, a strong odd-even signal is found to be a good precursor to the transition from bursting to quiescent behavior.


Solar and Stellar Activity Cycles

Solar and Stellar Activity Cycles

Author: Peter R. Wilson

Publisher: Cambridge University Press

Published: 1994-05-26

Total Pages: 292

ISBN-13: 9780521430814

DOWNLOAD EBOOK

How do you predict the parameters of future solar cycles? What is the role of dynamo theory in the cyclic activity of the Sun and similar stars? And what are the implications of chaos theory for stellar cycles? This book answers these questions and offers a timely review of studies in the cyclic activity of the Sun and other stars. This authoritative reference shows the importance of reliable predictions of the parameters of future solar cycles, and carefully explains the methods currently used to determine these (with special reference to the maximum of cycle 22). Some of the latest research into solar cycles is clearly presented; this includes helioseismology, observations of the extended activity cycle and the polar fields reversal, and contributions from dynamo theory and chaos theory. For graduate students and researchers, this monograph provides a much-needed synthesis of our understanding of activity cycles in the Sun and other stars.