Challenges of a Rechargeable Magnesium Battery

Challenges of a Rechargeable Magnesium Battery

Author: Claudiu B. Bucur

Publisher: Springer

Published: 2017-10-03

Total Pages: 75

ISBN-13: 331965067X

DOWNLOAD EBOOK

This expert volume addresses the practical challenges which have so far inhibited the commercial realization of a rechargeable magnesium battery, placing the discussion within the context of the already established lithium-ion battery. Lithium-ion batteries are becoming commonplace in most power applications, starting with portable electronics and expanding to motor vehicles, stationary storage, and backup power. Since their introduction 25 years ago, they have slowly been replacing all other battery chemistries. As the technology has matured, it is nearing its theoretical limits in terms of energy density, so research and development worldwide is quickly shifting towards the study of new battery chemistries with cheaper components and higher energy densities. A very popular battery candidate which has generated a lot of recent interest is the magnesium rechargeable battery. Magnesium is five orders of magnitude more abundant than lithium, can move two electrons per cation, and is known to plate smoothly without any evidence of dendritic growth. However, many challenges remain to be overcome. This essential volume presents an unfiltered view on both the realistic promises and significant obstacles for this technology, providing key insights and proposed solutions.


Magnesium Batteries

Magnesium Batteries

Author: Maximilian Fichtner

Publisher: Royal Society of Chemistry

Published: 2019-09-13

Total Pages: 352

ISBN-13: 1788018966

DOWNLOAD EBOOK

The quest for efficient and durable battery technologies is one of the key challenges for enabling the transition to renewable energy economies. Magnesium batteries, and in particular rechargeable non-aqueous systems, are an area of extensive opportunity and intense research. Rechargeable magnesium batteries hold numerous advantages over current lithium-ion batteries, namely the relative abundance of magnesium to lithium and the potential for magnesium batteries to greatly outperform their Li-ion counterparts. Magnesium Batteries comprehensively outlines the scientific and technical challenges in the field, covering anodes, cathodes, electrolytes and particularly promising systems such as the Mg–S cell. Edited by a leading figure in the field of electrochemical energy storage, with contributions from global experts, this book is a vital resource for students and researchers at all levels. Whether entering into the subject for the first time or extending their knowledge of battery materials across chemistry, physics, energy, engineering and materials science this book provides an ideal reference for anyone interested in the state-of-the-art and future of magnesium batteries.


Electrochemical Devices for Energy Storage Applications

Electrochemical Devices for Energy Storage Applications

Author: Mesfin A. Kebede

Publisher: CRC Press

Published: 2019-12-11

Total Pages: 302

ISBN-13: 1000763870

DOWNLOAD EBOOK

This book explores a wide range of energy storage devices, such as a lithium ion battery, sodium ion battery, magnesium ion battery and supercapacitors. Providing a comprehensive review of the current field, it also discusses the history of these technologies and introduces next-generation rechargeable batteries and supercapacitors. This book will serve as a valuable reference for researchers working with energy storage technologies across the fields of physics, chemistry, and engineering. Features: • Edited by established authorities in the field, with chapter contributions from subject area specialists • Provides a comprehensive review of field • Up to date with the latest developments and research


Zinc Batteries

Zinc Batteries

Author: Rajender Boddula

Publisher: John Wiley & Sons

Published: 2020-05-05

Total Pages: 272

ISBN-13: 1119661897

DOWNLOAD EBOOK

Battery technology is constantly changing, and the concepts and applications of these changes are rapidly becoming increasingly more important as more and more industries and individuals continue to make “greener” choices in their energy sources. As global dependence on fossil fuels slowly wanes, there is a heavier and heavier importance placed on cleaner power sources and methods for storing and transporting that power. Battery technology is a huge part of this global energy revolution. Zinc batteries are an advantageous choice over lithium-based batteries, which have dominated the market for years in multiple areas, most specifically in electric vehicles and other battery-powered devices. Zinc is the fourth most abundant metal in the world, which is influential in its lower cost, making it a very attractive material for use in batteries. Zinc-based batteries have been around since the 1930s, but only now are they taking center stage in the energy, automotive, and other industries. Zinc Batteries: Basics, Developments, and Applicationsis intended as a discussion of the different zinc batteries for energy storage applications. It also provides an in-depth description of various energy storage materials for Zinc (Zn) batteries. This book is an invaluable reference guide for electrochemists, chemical engineers, students, faculty, and R&D professionals in energy storage science, material science, and renewable energy.


Rechargeable Batteries

Rechargeable Batteries

Author: Zhengcheng Zhang

Publisher: Springer

Published: 2015-06-24

Total Pages: 710

ISBN-13: 3319154583

DOWNLOAD EBOOK

This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write each chapter of the book. The book covers not only lithium-ion batteries but also other batteries beyond lithium-ion, such as lithium-air, lithium-sulfur, sodium-ion, sodium-sulfur, magnesium-ion and liquid flow batteries.


Batteries

Batteries

Author: Stefano Passerini

Publisher: John Wiley & Sons

Published: 2020-07-24

Total Pages: 1126

ISBN-13: 3527827315

DOWNLOAD EBOOK

Part of the Encyclopedia of Electrochemistry, this comprehensive, two-volume handbook offers an up-to-date and in-depth review of the battery technologies in use today. It also includes information on the most likely candidates that hold the potential for further enhanced energy and power densities. It contains contributions from a renowned panel of international experts in the field. Batteries are extremely commonplace in modern day life. They provide electrochemically stored energy in the form of electricity to automobiles, aircrafts, electronic devices and to smart power grids. Comprehensive in scope, 'Batteries' covers information on well-established battery technologies such as charge-carrier-based lead acid and lithium ion batteries. The contributors also explore current developments on new technologies such as lithium-sulfur and -oxygen, sodium ion, and full organic batteries. Written for electrochemists, physical chemists, and materials scientists, 'Batteries' is an accessible compendium that offers a thorough review of the most relevant current battery technologies and explores the technology in the years to come.


Lithium Batteries

Lithium Batteries

Author: Bruno Scrosati

Publisher: John Wiley & Sons

Published: 2013-06-18

Total Pages: 495

ISBN-13: 1118615395

DOWNLOAD EBOOK

Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and identifying new electrode and electrolyte materials. The first chapter of Lithium Batteries sets the foundation for the rest of the book with a brief account of the history of lithium-ion battery development. Next, the book covers such topics as: Advanced organic and ionic liquid electrolytes for battery applications Advanced cathode materials for lithium-ion batteries Metal fluorosulphates capable of doubling the energy density of lithium-ion batteries Efforts to develop lithium-air batteries Alternative anode rechargeable batteries such as magnesium and sodium anode systems Each of the sixteen chapters has been contributed by one or more leading experts in electrochemistry and lithium battery technology. Their contributions are based on the latest published findings as well as their own firsthand laboratory experience. Figures throughout the book help readers understand the concepts underlying the latest efforts to advance the science of batteries and develop new materials. Readers will also find a bibliography at the end of each chapter to facilitate further research into individual topics. Lithium Batteries provides electrochemistry students and researchers with a snapshot of current efforts to improve battery performance as well as the tools needed to advance their own research efforts.


Nonaqueous Electrochemistry

Nonaqueous Electrochemistry

Author: Doron Aurbach

Publisher: CRC Press

Published: 1999-07-27

Total Pages: 980

ISBN-13: 9780824741389

DOWNLOAD EBOOK

An examination of applications of electrochemical techniques to many organic and inorganic compounds that are either unstable or insoluble in water. It focuses on the continuing drive toward miniaturization in electronics met by designs for high-energy density batteries (based on nonaqueous systems). It addresses applications to nonaqueous batteries, supercapacitators, highly sensitive reagents, and electroorganic and electroinorganic synthesis.


Prospects For Li-ion Batteries And Emerging Energy Electrochemical Systems

Prospects For Li-ion Batteries And Emerging Energy Electrochemical Systems

Author: Laure Monconduit

Publisher: World Scientific

Published: 2018-02-28

Total Pages: 381

ISBN-13: 9813228156

DOWNLOAD EBOOK

The Li-ion battery market is growing fast due to its ever increasing number of applications, from electric vehicles to portable devices. These devices are in demand due to safety reasons, energy efficiency, high power density and long life duration, which drive the need for more efficient electrochemical energy storage systems. The aim of this book is to provide the challenges and perspectives for Li-ion batteries (chapters 1 and 2), at the negative electrode as well as at the positive electrode, and for technologies beyond the Li-ion with the emerging Na-ion batteries and multivalent (Mg, Al, Ca, etc) systems (chapters 4 and 5). The aim is also to alert on the necessity to develop the recycling methods of the millions of produced batteries which are going to further flood our societies (chapter 3), and also to continuously increase the safety of the energy storage systems. For the latter challenge, it is interesting to seriously consider polymer electrolytes and batteries as an alternative (chapter 6).This book will take readers inside recent breakthroughs made in the electrochemical energy systems. It is a collaborative work of experts from the most known teams in the batteries field in Europe and beyond, from academics as well as from manufacturers.


Next Generation Batteries

Next Generation Batteries

Author: Kiyoshi Kanamura

Publisher: Springer Nature

Published: 2021-03-23

Total Pages: 580

ISBN-13: 9813366680

DOWNLOAD EBOOK

In this book, the development of next-generation batteries is introduced. Included are reports of investigations to realize high energy density batteries: Li-air, Li-sulfur, and all solid-state and metal anode (Mg, Al, Zn) batteries. Sulfide and oxide solid electrolytes are also reviewed.A number of relevant aspects of all solid-state batteries with a carbon anode or Li-metal anode are discussed and described: The formation of the cathode; the interface between the cathode (anode) and electrolyte; the discharge and charge mechanisms of the Li-air battery; the electrolyte system for the Li-air battery; and cell construction. The Li-sulfur battery involves a critical problem, namely, the dissolution of intermediates of sulfur during the discharge process. Here, new electrolyte systems for the suppression of intermediate dissolution are discussed. Li-metal batteries with liquid electrolytes also present a significant problem: the dendrite formation of lithium. New separators and electrolytes are introduced to improve the safety and rechargeability of the Li-metal anode. Mg, Al, and Zn metal anodes have been also applied to rechargeable batteries, and in this book, new metal anode batteries are introduced as the generation-after-next batteries.This volume is a summary of ALCA-SPRING projects, which constitute the most extensive research for next-generation batteries in Japan. The work presented in this book is highly informative and useful not only for battery researchers but also for researchers in the fields of electric vehicles and energy storage.