Challenges in Geometry

Challenges in Geometry

Author: Christopher J. Bradley

Publisher: OUP Oxford

Published: 2005-02-17

Total Pages: 218

ISBN-13: 0191524263

DOWNLOAD EBOOK

The International Mathematical Olympiad (IMO) is the World Championship Mathematics Competition for High School students and is held annually in a different country. More than eighty countries are involved. Containing numerous exercises, illustrations, hints and solutions, presented in a lucid and thought-provoking style, this text provides a wide range of skills required in competitions such as the Mathematical Olympiad. More than fifty problems in Euclidean geometry involving integers and rational numbers are presented. Early chapters cover elementary problems while later sections break new ground in certain areas and are a greater challenge for the more adventurous reader. The text is ideal for Mathematical Olympiad training and also serves as a supplementary text for students in pure mathematics, particularly number theory and geometry. Dr. Christopher Bradley was formerly a Fellow and Tutor in Mathematics at Jesus College, Oxford, Deputy Leader of the British Mathematical Olympiad Team and for several years Secretary of the British Mathematical Olympiad Committee.


Challenging Problems in Geometry

Challenging Problems in Geometry

Author: Alfred S. Posamentier

Publisher: Courier Corporation

Published: 2012-04-30

Total Pages: 275

ISBN-13: 0486134865

DOWNLOAD EBOOK

Collection of nearly 200 unusual problems dealing with congruence and parallelism, the Pythagorean theorem, circles, area relationships, Ptolemy and the cyclic quadrilateral, collinearity and concurrency and more. Arranged in order of difficulty. Detailed solutions.


Geometry in Problems

Geometry in Problems

Author: Alexander Shen

Publisher: American Mathematical Soc.

Published: 2016

Total Pages: 229

ISBN-13: 1470419211

DOWNLOAD EBOOK

Classical Euclidean geometry, with all its triangles, circles, and inscribed angles, remains an excellent playground for high-school mathematics students, even if it looks outdated from the professional mathematician's viewpoint. It provides an excellent choice of elegant and natural problems that can be used in a course based on problem solving. The book contains more than 750 (mostly) easy but nontrivial problems in all areas of plane geometry and solutions for most of them, as well as additional problems for self-study (some with hints). Each chapter also provides concise reminders of basic notions used in the chapter, so the book is almost self-contained (although a good textbook and competent teacher are always recommended). More than 450 figures illustrate the problems and their solutions. The book can be used by motivated high-school students, as well as their teachers and parents. After solving the problems in the book the student will have mastered the main notions and methods of plane geometry and, hopefully, will have had fun in the process. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. What a joy! Shen's ``Geometry in Problems'' is a gift to the school teaching world. Beautifully organized by content topic, Shen has collated a vast collection of fresh, innovative, and highly classroom-relevant questions, problems, and challenges sure to enliven the minds and clever thinking of all those studying Euclidean geometry for the first time. This book is a spectacular resource for educators and students alike. Users will not only sharpen their mathematical understanding of specific topics but will also sharpen their problem-solving wits and come to truly own the mathematics explored. Also, Math Circle leaders can draw much inspiration for session ideas from the material presented in this book. --James Tanton, Mathematician-at-Large, Mathematical Association of America We learn mathematics best by doing mathematics. The author of this book recognizes this principle. He invites the reader to participate in learning plane geometry through carefully chosen problems, with brief explanations leading to much activity. The problems in the book are sometimes deep and subtle: almost everyone can do some of them, and almost no one can do all. The reader comes away with a view of geometry refreshed by experience. --Mark Saul, Director of Competitions, Mathematical Association of America


The Art and Craft of Problem Solving

The Art and Craft of Problem Solving

Author: Paul Zeitz

Publisher: John Wiley & Sons

Published: 2017

Total Pages: 389

ISBN-13: 1119239907

DOWNLOAD EBOOK

This text on mathematical problem solving provides a comprehensive outline of "problemsolving-ology," concentrating on strategy and tactics. It discusses a number of standard mathematical subjects such as combinatorics and calculus from a problem solver's perspective.


Compiled and Solved Problems in Geometry and Trigonometry

Compiled and Solved Problems in Geometry and Trigonometry

Author: Florentin Smarandache

Publisher: Infinite Study

Published: 2015-05-01

Total Pages: 221

ISBN-13: 1599732998

DOWNLOAD EBOOK

This book is a translation from Romanian of "Probleme Compilate şi Rezolvate de Geometrie şi Trigonometrie" (University of Kishinev Press, Kishinev, 169 p., 1998), and includes problems of 2D and 3D Euclidean geometry plus trigonometry, compiled and solved from the Romanian Textbooks for 9th and 10th grade students.


Open Middle Math

Open Middle Math

Author: Robert Kaplinsky

Publisher: Taylor & Francis

Published: 2023-10-10

Total Pages: 193

ISBN-13: 1003839886

DOWNLOAD EBOOK

This book is an amazing resource for teachers who are struggling to help students develop both procedural fluency and conceptual understanding.. --Dr. Margaret (Peg) Smith, co-author of5 Practices for Orchestrating Productive Mathematical Discussions Robert Kaplinsky, the co-creator of Open Middle math problems, brings hisnew class of tasks designed to stimulate deeper thinking and lively discussion among middle and high school students in Open Middle Math: Problems That Unlock Student Thinking, Grades 6-12. The problems are characterized by a closed beginning,- meaning all students start with the same initial problem, and a closed end,- meaning there is only one correct or optimal answer. The key is that the middle is open- in the sense that there are multiple ways to approach and ultimately solve the problem. These tasks have proven enormously popular with teachers looking to assess and deepen student understanding, build student stamina, and energize their classrooms. Professional Learning Resource for Teachers: Open Middle Math is an indispensable resource for educators interested in teaching student-centered mathematics in middle and high schools consistent with the national and state standards. Sample Problems at Each Grade: The book demonstrates the Open Middle concept with sample problems ranging from dividing fractions at 6th grade to algebra, trigonometry, and calculus. Teaching Tips for Student-Centered Math Classrooms: Kaplinsky shares guidance on choosing problems, designing your own math problems, and teaching for multiple purposes, including formative assessment, identifying misconceptions, procedural fluency, and conceptual understanding. Adaptable and Accessible Math: The tasks can be solved using various strategies at different levels of sophistication, which means all students can access the problems and participate in the conversation. Open Middle Math will help math teachers transform the 6th -12th grade classroom into an environment focused on problem solving, student dialogue, and critical thinking.


Mathematics Problem-solving Challenges For Secondary School Students And Beyond

Mathematics Problem-solving Challenges For Secondary School Students And Beyond

Author: Alan Sultan

Publisher: World Scientific

Published: 2016-02-25

Total Pages: 196

ISBN-13: 981473005X

DOWNLOAD EBOOK

This book is a rare resource consisting of problems and solutions similar to those seen in mathematics contests from around the world. It is an excellent training resource for high school students who plan to participate in mathematics contests, and a wonderful collection of problems that can be used by teachers who wish to offer their advanced students some challenging nontraditional problems to work on to build their problem solving skills. It is also an excellent source of problems for the mathematical hobbyist who enjoys solving problems on various levels.Problems are organized by topic and level of difficulty and are cross-referenced by type, making finding many problems of a similar genre easy. An appendix with the mathematical formulas needed to solve the problems has been included for the reader's convenience. We expect that this book will expand the mathematical knowledge and help sharpen the skills of students in high schools, universities and beyond.


Geometry by Construction

Geometry by Construction

Author: Michael McDaniel

Publisher: Universal-Publishers

Published: 2015-02-05

Total Pages: 149

ISBN-13: 1627340289

DOWNLOAD EBOOK

"'Geometry by construction' challenges its readers to participate in the creation of mathematics. The questions span the spectrum from easy to newly published research and so are appropriate for a variety of students and teachers. From differentiation in a high school course through college classes and into summer research, any interested geometer will find compelling material"--Back cover.


107 Geometry Problems from the AwesomeMath Year-round Program

107 Geometry Problems from the AwesomeMath Year-round Program

Author: Titu Andreescu

Publisher:

Published: 2013

Total Pages: 0

ISBN-13: 9780979926976

DOWNLOAD EBOOK

This book contains 107 geometry problems used in the AwesomeMath Year-Round Program. The problems offer additional challenges for those who have progressed through the 106 Geometry Problems from the AwesomeMath Summer Camp publication. The book begins with a theoretical chapter, where the authors review basic facts and familiarize the reader with some more advanced techniques. The authors then proceed to the main part of the work, the problem sections. The problems are a carefully selected and balanced mix which offers a vast variety of flavors and difficulties, ranging from AMC and AIME levels to high-end IMO problems. Out of thousands of Olympiad problems from around the globe the authors chose those which best illustrate the featured techniques and their applications. The problems meet the authors' demanding taste and fully exhibit the enchanting beauty of classical geometry. For every problem the authors provide a detailed solution and strive to pass on the intuition and motivation behind it. Numerous problems have multiple solutions.Directly experiencing Olympiad geometry both as contestants and instructors, the authors are convinced that a neat diagram is essential to efficiently solve a geometry problem. Their diagrams do not contain anything superfluous, yet emphasize the key elements and benefit from a good choice of orientation. Many of the proofs should be legible only from looking at the diagrams.