CFD simulations of particle laden flows: Particle transport and separation

CFD simulations of particle laden flows: Particle transport and separation

Author: David Schellander

Publisher: Anchor Academic Publishing (aap_verlag)

Published: 2014-02-01

Total Pages: 152

ISBN-13: 3954896710

DOWNLOAD EBOOK

This study presents the basic models for discrete and continuous particle laden flow simulation. An overview of the two main approaches, the Lagrangian discrete particle model and the Eulerian granular phase model is given. Moreover these two approaches are combined to a hybrid model to use the benefits of the discrete and continuous description. This safes computational time and increase the efficiency of particle laden flow simulations. Furthermore the models are extended to poly-disperse particles including a simple agglomeration model based on a population balance equation. Finally the usability of the models is shown at a pneumatic particle transport system including particle strand building and the separation of particles using an industrial cyclone.


Laboratory Unit Operations and Experimental Methods in Chemical Engineering

Laboratory Unit Operations and Experimental Methods in Chemical Engineering

Author: Omar M. Basha

Publisher: BoD – Books on Demand

Published: 2018-10-10

Total Pages: 185

ISBN-13: 1789840554

DOWNLOAD EBOOK

This book covers a wide variety of topics related to the application of experimental methods, in addition to the pedagogy of chemical engineering laboratory unit operations. The purpose of this book is to create a platform for the exchange of different experimental techniques, approaches and lessons, in addition to new ideas and strategies in teaching laboratory unit operations to undergraduate chemical engineering students. It is recommended for instructors and students of chemical engineering and natural sciences who are interested in reading about different experimental setups and techniques, covering a wide range of scales, which can be widely applied to many areas of chemical engineering interest.


Particles in Turbulent Flows

Particles in Turbulent Flows

Author: Leonid I. Zaichik

Publisher: John Wiley & Sons

Published: 2008-12-04

Total Pages: 318

ISBN-13: 3527626263

DOWNLOAD EBOOK

The only work available to treat the theory of turbulent flow with suspended particles, this book also includes a section on simulation methods, comparing the model results obtained with the PDF method to those obtained with other techniques, such as DNS, LES and RANS. Written by experienced scientists with background in oil and gas processing, this book is applicable to a wide range of industries -- from the petrol industry and industrial chemistry to food and water processing.


Computational Fluid Dynamics

Computational Fluid Dynamics

Author: Xiaofeng Liu

Publisher:

Published: 2019-05-16

Total Pages: 186

ISBN-13: 9780784415313

DOWNLOAD EBOOK

This book provides an introduction, overview, and specific examples of computational fluid dynamics and their applications in the water, wastewater, and stormwater industry.


Gas Cyclones and Swirl Tubes

Gas Cyclones and Swirl Tubes

Author: Alex C. Hoffmann

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 347

ISBN-13: 3662073773

DOWNLOAD EBOOK

This book has been conceived to provide guidance on the theory and design of cyclone systems. Forthose new to the topic, a cyclone is, in its most basic form, a stationary mechanical device that utilizes centrifugal force to separate solid or liquid particles from a carrier gas. Gas enters near the top via a tangential or vaned inlet, which gives rise to an axially descending spiral of gas and a centrifugal force field that causes the incoming particles to concentrate along, and spiral down, the inner walls of the separator. The thus-segregated particulate phase is allowed to exit out an underflow pipe while the gas phase constricts, and - in most separators - reverses its axial direction of flow and exits out a separate overflow pipe. Cyclones are applied in both heavy and light industrial applications and may be designed as either classifiers or separators. Their applications are as plentiful as they are varied. Examples include their use in the separation or classification of powder coatings, plastic fines, sawdust, wood chips, sand, sintered/powdered meta!, plastic and meta! pellets, rock and mineral cmshings, carbon fines, grain products, pulverized coal, chalk, coal and coal ash, catalyst and petroleum coke fines, mist entrained off of various processing units and liquid components from scmbbing and drilling operations. They have even been applied to separate foam into its component gas and liquid phases in recent years.


Turbulent Jets

Turbulent Jets

Author: N. Rajaratnam

Publisher: Elsevier

Published: 1976-01-01

Total Pages: 315

ISBN-13: 0080869963

DOWNLOAD EBOOK

Turbulent Jets


Progress in Turbulence and Wind Energy IV

Progress in Turbulence and Wind Energy IV

Author: Martin Oberlack

Publisher: Springer Science & Business Media

Published: 2012-04-24

Total Pages: 299

ISBN-13: 3642289681

DOWNLOAD EBOOK

This fourth issue on "progress in turbulence" is based on the fourth ITI conference (ITI interdisciplinary turbulence initiative), which took place in Bertinoro, North Italy. Leading researchers from the engineering and physical sciences presented latest results in turbulence research. Basic as well as applied research is driven by the rather notorious difficult and essentially unsolved problem of turbulence. In this collection of contributions clear progress can be seen in different aspects, ranging from new quality of numerical simulations to new concepts of experimental investigations and new theoretical developments. The importance of turbulence is shown for a wide range of applications including: combustion, energy, flow control, urban flows, are few examples found in this volume. A motivation was to bring fundamentals of turbulence in connection with renewable energy. This lead us to add a special topic relevant to the impact of turbulence on the wind energy conversion. The structure of the present book is as such that contributions have been bundled according to covering topics i.e. I Basic Turbulence Aspects, II Particle Laden Flows, III Modeling and Simulations, IV, Experimental Methods, V Special Flows, VI Atmospheric Boundary Layer, VII Boundary Layer, VIII Wind Energy and IX Convection. This book is dedicated to the memory of Prof. Tim Nickels. Shortly after giving an invited lecture at the 4th ITI conference, the turbulence community lost a world-class scientist, a friend and devoted family man.


Multiphase Flow Handbook, Second Edition

Multiphase Flow Handbook, Second Edition

Author: Efstathios Michaelides

Publisher: CRC Press

Published: 2016-10-26

Total Pages: 1559

ISBN-13: 1315354624

DOWNLOAD EBOOK

The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.