Cellular and Biomolecular Mechanics and Mechanobiology

Cellular and Biomolecular Mechanics and Mechanobiology

Author: Amit Gefen

Publisher: Springer Science & Business Media

Published: 2010-12-02

Total Pages: 553

ISBN-13: 3642142184

DOWNLOAD EBOOK

This book describes these exciting new developments, and presents experimental and computational findings that altogether describe the frontier of knowledge in cellular and biomolecular mechanics, and the biological implications, in health and disease. The book is written for bioengineers with interest in cellular mechanics, for biophysicists, biochemists, medical researchers and all other professionals with interest in how cells produce and respond to mechanical loads.


Mechanobiology of Cell-Cell and Cell-Matrix Interactions

Mechanobiology of Cell-Cell and Cell-Matrix Interactions

Author: A. Wagoner Johnson

Publisher: Springer Science & Business Media

Published: 2011-02-21

Total Pages: 329

ISBN-13: 1441980830

DOWNLOAD EBOOK

Mechanobiology of Cell-Matrix Interactions focuses on characterization and modeling of interactions between cells and their local extracellular environment, exploring how these interactions may mediate cell behavior. Studies of cell-matrix interactions rely on integrating engineering, (molecular and cellular) biology, and imaging disciplines. Recent advances in the field have begun to unravel our understanding of how cells gather information from their surrounding environment, and how they interrogate such information during the cell fate decision making process. Topics include adhesive and integrin-ligand interactions; extracellular influences on cell biology and behavior; cooperative mechanisms of cell-cell and cell-matrix interactions; the mechanobiology of pathological processes; (multi-scale) modeling approaches to describe the complexity or cell-matrix interactions; and quantitative methods required for such experimental and modeling studies.


Cellular and Biomolecular Mechanics and Mechanobiology

Cellular and Biomolecular Mechanics and Mechanobiology

Author: Amit Gefen

Publisher: Springer

Published: 2011-03-03

Total Pages: 562

ISBN-13: 9783642142192

DOWNLOAD EBOOK

This book describes these exciting new developments, and presents experimental and computational findings that altogether describe the frontier of knowledge in cellular and biomolecular mechanics, and the biological implications, in health and disease. The book is written for bioengineers with interest in cellular mechanics, for biophysicists, biochemists, medical researchers and all other professionals with interest in how cells produce and respond to mechanical loads.


Introduction to Cell Mechanics and Mechanobiology

Introduction to Cell Mechanics and Mechanobiology

Author: Christopher R. Jacobs

Publisher: Garland Science

Published: 2012-11-16

Total Pages: 350

ISBN-13: 1135042659

DOWNLOAD EBOOK

Introduction to Cell Mechanics and Mechanobiology is designed for a one-semester course in the mechanics of the cell offered to advanced undergraduate and graduate students in biomedical engineering, bioengineering, and mechanical engineering. It teaches a quantitative understanding of the way cells detect, modify, and respond to the physical prope


Introductory Biomechanics

Introductory Biomechanics

Author: C. Ross Ethier

Publisher: Cambridge University Press

Published: 2007-03-12

Total Pages: 10

ISBN-13: 1139461826

DOWNLOAD EBOOK

Introductory Biomechanics is a new, integrated text written specifically for engineering students. It provides a broad overview of this important branch of the rapidly growing field of bioengineering. A wide selection of topics is presented, ranging from the mechanics of single cells to the dynamics of human movement. No prior biological knowledge is assumed and in each chapter, the relevant anatomy and physiology are first described. The biological system is then analyzed from a mechanical viewpoint by reducing it to its essential elements, using the laws of mechanics and then tying mechanical insights back to biological function. This integrated approach provides students with a deeper understanding of both the mechanics and the biology than from qualitative study alone. The text is supported by a wealth of illustrations, tables and examples, a large selection of suitable problems and hundreds of current references, making it an essential textbook for any biomechanics course.


Handbook of Imaging in Biological Mechanics

Handbook of Imaging in Biological Mechanics

Author: Corey P. Neu

Publisher: CRC Press

Published: 2014-10-24

Total Pages: 556

ISBN-13: 1466588144

DOWNLOAD EBOOK

Emerging imaging techniques have opened new fronts to investigate tissues, cells, and proteins. Transformative technologies such as microCT scans, super-resolution microscopy, fluorescence-based tools, and other methods now allow us to study the mechanics of cancer, dissect the origins of cellular force regulation, and examine biological specimens


Biomechanics: Trends in Modeling and Simulation

Biomechanics: Trends in Modeling and Simulation

Author: Gerhard A. Holzapfel

Publisher: Springer

Published: 2016-09-14

Total Pages: 319

ISBN-13: 3319414755

DOWNLOAD EBOOK

The book presents a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of soft biological tissues. Seven well-known scientists working in that particular field discuss topics such as biomolecules, networks and cells as well as failure, multi-scale, agent-based, bio-chemo-mechanical and finite element models appropriate for computational analysis. Applications include arteries, the heart, vascular stents and valve implants as well as adipose, brain, collagenous and engineered tissues. The mechanics of the whole cell and sub-cellular components as well as the extracellular matrix structure and mechanotransduction are described. In particular, the formation and remodeling of stress fibers, cytoskeletal contractility, cell adhesion and the mechanical regulation of fibroblast migration in healing myocardial infarcts are discussed. The essential ingredients of continuum mechanics are provided. Constitutive models of fiber-reinforced materials with an emphasis on arterial walls and the myocardium are discussed and the important influence of residual stresses on material response emphasized. The mechanics and function of the heart, the brain and adipose tissues are discussed as well. Particular attention is focused on microstructural and multi-scale modeling, finite element implementation and simulation of cells and tissues.


Biomechanics in Oncology

Biomechanics in Oncology

Author: Cheng Dong

Publisher: Springer

Published: 2018-10-27

Total Pages: 378

ISBN-13: 3319952943

DOWNLOAD EBOOK

This book covers multi-scale biomechanics for oncology, ranging from cells and tissues to whole organ. Topics covered include, but not limited to, biomaterials in mechano-oncology, non-invasive imaging techniques, mechanical models of cell migration, cancer cell mechanics, and platelet-based drug delivery for cancer applications. This is an ideal book for graduate students, biomedical engineers, and researchers in the field of mechanobiology and oncology. This book also: Describes how mechanical properties of cancer cells, the extracellular matrix, tumor microenvironment and immuno-editing, and fluid flow dynamics contribute to tumor progression and the metastatic process Provides the latest research on non-invasive imaging, including traction force microscopy and brillouin confocal microscopy Includes insight into NCIs’ role in supporting biomechanics in oncology research Details how biomaterials in mechano-oncology can be used as a means to tune materials to study cancer


Cellular Mechanotransduction

Cellular Mechanotransduction

Author: Mohammad R. K. Mofrad

Publisher: Cambridge University Press

Published: 2014-07-31

Total Pages: 0

ISBN-13: 9781107682467

DOWNLOAD EBOOK

"Mechanotransduction" is the term for the ability, first described by 19th-century anatomist Julius Wolff, of living tissues to sense mechanical stress and respond by tissue remodeling. More recently, the scope of mechanotransduction has been expanded to include the sensation of stress, its translation into a biochemical signal, and the sequence of biological responses it produces. This book looks at mechanotransduction in a more restricted sense, focusing on the process of stress sensing and transducing a mechanical force into a cascade of biochemical signals. This stress has become increasingly recognized as one of the primary and essential factors controlling biological functions, ultimately affecting the function of the cells, tissues, and organs. A primary goal of this broad book is also to help define the new field of mechanomics, which attempts to describe the complete mechanical state of a biological system.


Principles of Regenerative Medicine

Principles of Regenerative Medicine

Author: Anthony Atala

Publisher: Academic Press

Published: 2018-08-09

Total Pages: 1456

ISBN-13: 0128098937

DOWNLOAD EBOOK

Principles of Regenerative Medicine, Third Edition, details the technologies and advances applied in recent years to strategies for healing and generating tissue. Contributions from a stellar cast of researchers cover the biological and molecular basis of regenerative medicine, highlighting stem cells, wound healing and cell and tissue development. Advances in cell and tissue therapy, including replacement of tissues and organs damaged by disease and previously untreatable conditions, such as diabetes, heart disease, liver disease and renal failure are also incorporated to provide a view to the future and framework for additional studies. - Comprehensively covers the interdisciplinary field of regenerative medicine with contributions from leaders in tissue engineering, cell and developmental biology, biomaterials sciences, nanotechnology, physics, chemistry, bioengineering and surgery - Includes new chapters devoted to iPS cells and other alternative sources for generating stem cells as written by the scientists who made the breakthroughs - Edited by a world-renowned team to present a complete story of the development and promise of regenerative medicine