The Wolfram Physics Project is a bold effort to find the fundamental theory of physics. It combines new ideas with the latest research in physics, mathematics and computation in the push to achieve this ultimate goal of science. Written with Stephen Wolfram's characteristic expository flair, this book provides a unique opportunity to learn about a historic initiative in science right as it is happening. A Project to Find the Fundamental Theory of Physics includes an accessible introduction to the project as well as core technical exposition and rich, never-before-seen visualizations.
This book provides a description of the evolution of the concepts of causality and time through modern physics considering first relativity theories and them quantum mechanics. Relativity, at least in the form given by Einstein, denies reality of past, present and future and does not indicate a time direction. On the other hand a time direction is indicated by all the phenomena we observe including our own existence. Quantum mechanics seems to indicate a different story. It is argued that, because of its non deterministic character, it is capable to indicate an objective time direction. This occurs through the phenomena of wave function collapse and entanglement which are discussed at length.
This work presents a series of dramatic discoveries never before made public. Starting from a collection of simple computer experiments---illustrated in the book by striking computer graphics---Wolfram shows how their unexpected results force a whole new way of looking at the operation of our universe. Wolfram uses his approach to tackle a remarkable array of fundamental problems in science: from the origin of the Second Law of thermodynamics, to the development of complexity in biology, the computational limitations of mathematics, the possibility of a truly fundamental theory of physics, and the interplay between free will and determinism.
Examining a series of provocative paradoxes about consciousness, choice, ethics, and other topics, Good and Real tries to reconcile a purely mechanical view of the universe with key aspects of our subjective impressions of our own existence. In Good and Real, Gary Drescher examines a series of provocative paradoxes about consciousness, choice, ethics, quantum mechanics, and other topics, in an effort to reconcile a purely mechanical view of the universe with key aspects of our subjective impressions of our own existence. Many scientists suspect that the universe can ultimately be described by a simple (perhaps even deterministic) formalism; all that is real unfolds mechanically according to that formalism. But how, then, is it possible for us to be conscious, or to make genuine choices? And how can there be an ethical dimension to such choices? Drescher sketches computational models of consciousness, choice, and subjunctive reasoning--what would happen if this or that were to occur? --to show how such phenomena are compatible with a mechanical, even deterministic universe. Analyses of Newcomb's Problem (a paradox about choice) and the Prisoner's Dilemma (a paradox about self-interest vs. altruism, arguably reducible to Newcomb's Problem) help bring the problems and proposed solutions into focus. Regarding quantum mechanics, Drescher builds on Everett's relative-state formulation--but presenting a simplified formalism, accessible to laypersons--to argue that, contrary to some popular impressions, quantum mechanics is compatible with an objective, deterministic physical reality, and that there is no special connection between quantum phenomena and consciousness. In each of several disparate but intertwined topics ranging from physics to ethics, Drescher argues that a missing technical linchpin can make the quest for objectivity seem impossible, until the elusive technical fix is at hand.
The most important scientist of the twentieth century and the most important artist had their periods of greatest creativity almost simultaneously and in remarkably similar circumstances. This fascinating parallel biography of Albert Einstein and Pablo Picasso as young men examines their greatest creations -- Picasso's Les Demoiselles d'Avignon and Einstein's special theory of relativity. Miller shows how these breakthroughs arose not only from within their respective fields but from larger currents in the intellectual culture of the times. Ultimately, Miller shows how Einstein and Picasso, in a deep and important sense, were both working on the same problem.
In this classic, David Bohm was the first to offer us his causal interpretation of the quantum theory. Causality and Chance in Modern Physics continues to make possible further insight into the meaning of the quantum theory and to suggest ways of extending the theory into new directions.
This book is the final outcome of two projects. My first project was to publish a set of texts written by Schrodinger at the beginning of the 1950's for his seminars and lectures at the Dublin Institute for Advanced Studies. These almost completely forgotten texts contained important insights into the interpretation of quantum mechanics, and they provided several ideas which were missing or elusively expressed in SchrOdinger's published papers and books of the same period. However, they were likely to be misinterpreted out of their context. The problem was that current scholarship could not help very much the reader of these writings to figure out their significance. The few available studies about SchrOdinger's interpretation of quantum mechanics are generally excellent, but almost entirely restricted to the initial period 1925-1927. Very little work has been done on Schrodinger's late views on the theory he contributed to create and develop. The generally accepted view is that he never really recovered from his interpretative failure of 1926-1927, and that his late reflections (during the 1950's) are little more than an expression of his rising nostalgia for the lost ideal of picturing the world, not to say for some favourite traditional picture. But the content and style of Schrodinger's texts of the 1950's do not agree at all with this melancholic appraisal; they rather set the stage for a thorough renewal of accepted representations. In order to elucidate this paradox, I adopted several strategies.
For over two decades Wesley Salmon has helped to shape the course of debate in philosophy of science. He is a major contributor to the philosophical discussion of problems associated with causality and the author of two influential books on scientific explanation. This long-awaited volume collects twenty- six of Salmon's essays, including seven that have never before been published and others difficult to find. Part I comprises five introductory essays that presuppose no formal training in philosophy of science and form a background for subsequent essays. Parts II and III contain Salmon's seminal work on scientific explanation and causality. Part IV offers survey articles that feature advanced material but remain accessible to those outside philosophy of science. Essays in Part V address specific issues in particular scientific disciplines, namely, archaeology and anthropology, astrophysics and cosmology, and physics. Clear, compelling, and essential, this volume offers a superb introduction to philosophy of science for nonspecialists and belongs on the bookshelf of all who carry out work in this exciting field. Wesley Salmon is renowned for his seminal contributions to the philosophy of science. He has powerfully and permanently shaped discussion of such issues as lawlike and probabilistic explanation and the interrelation of explanatory notions to causal notions. This unique volume brings together twenty-six of his essays on subjects related to causality and explanation, written over the period 1971-1995. Six of the essays have never been published before and many others have only appeared in obscure venues. The volume includes a section of accessible introductory pieces, as well as more advanced and technical pieces, and will make essential work in the philosophy of science readily available to both scholars and students.
Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.