This work describes the essential aspects of enantioselective catalysis, with chapters organised by concept rather than by reaction type. Each concept is supported by examples to give the reader broad exposure to a wide range of catalysts, reactions and reaction mechanisms.
This book covers advances in the methods of catalytic asymmetric synthesis and their applications. Coverage moves from new materials and technologies to homogeneous metal-free catalysts and homogeneous metal catalysts. The applications of several methodologies for the synthesis of biologically active molecules are discussed. Part I addresses recent advances in new materials and technologies such as supported catalysts, supports, self-supported catalysts, chiral ionic liquids, supercritical fluids, flow reactors and microwaves related to asymmetric catalysis. Part II covers advances and milestones in organocatalytic, enzymatic and metal-based mediated asymmetric synthesis, including applications for the synthesis of biologically active molecules. Written by leading international experts, this book consists of 16 chapters with 2000 References and illustrations of 560 schemes and figures.
Asymmetric synthesis has become a major aspect of modern organic chemistry. The stereochemical properties of an organic compound are often essential to its bioactivity, and the need for stereochemically pure pharmaceutical products is a key example of the importance of stereochemical control in organic synthesis. However, achieving high levels of stereoselectivity in the synthesis of complex natural products represents a considerable intellectual and practical challenge for chemists. Written from a synthetic organic chemistry perspective, this text provides a practical overview of the field, illustrating a wide range of transformations that can be achieved. The book captures the latest advances in asymmetric catalysis with emphasis placed on non-enzymatic methods. Topics covered include: Reduction of alkenes, ketones and imines Nucleophilic addition to carbonyl compounds Catalytic carbon-carbon bond forming reactions Catalytic reactions involving metal carbenoids Conjugate addition reactions Catalysis in Asymmetric Synthesis bridges the gap between undergraduate and advanced level textbooks and provides a convenient point of entry to the primary literature for the experienced synthetic organic chemist.
Catalytic Asymmetric Synthesis Seminal text presenting detailed accounts of the most important catalytic asymmetric reactions known today This book covers the preparation of enantiomerically pure or enriched chemical compounds by use of chiral catalyst molecules. While reviewing the most important catalytic methods for asymmetric organic synthesis, this book highlights the most important and recent developments in catalytic asymmetric synthesis. Edited by two well-qualified experts, sample topics covered in the work include: Metal catalysis, organocatalysis, photoredox catalysis, enzyme catalysis C–H bond functionalization reactions Carbon–carbon bond formation reactions, carbon–halogen bond formation reactions, hydrogenations, polymerizations, flow reactions Axially chiral compounds Retaining the best of its predecessors but now thoroughly up to date with the important and recent developments in catalytic asymmetric synthesis, the 4th edition of Catalytic Asymmetric Synthesis serves as an excellent desktop reference and text for researchers and students, from upper-level undergraduates all the way to experienced professionals in industry or academia.
Edited by two of the experts in the field, the central aim is to show organic chemists working in process development that enantioselective catalysis is suitable for the large-scale production of enantioenriched intermediates. In so doing, it is equally a source of information and inspiration for academic research, and, with its contribution by Noble prizewinner W. S. Knowles, will also heighten the status of industrial catalyst specialists working in the exciting field of enantioselective catalysis. Some 25 contributions from top industrial researchers around the world present case studies on the development of the widest possible range of large-scale enantioselective processes, featuring stereoselective production processes of fine-chemicals, agrochemicals and pharmaceuticals. Clearly structured according to the nature of the task, this handbook adopts a problem-driven approach such that readers can easily find how colleagues have dealt with a similar situation.
A compilation of recent advances and applications in asymmetric catalysis The field of asymmetric catalysis has grown rapidly and plays a key role in drug discovery and pharmaceuticals. New Frontiers in Asymmetric Catalysis gives readers a fundamental understanding of the concepts and applications of asymmetric catalysis reactions and discusses the latest developments and findings. With contributions from preeminent scientists in their respective fields, it covers: * "Rational" ligand design, which is critically dependent on the reaction type (reduction, oxidation, and C-C bond formation) * Recent findings on activation of C-H bonds, C-C bonds, and small molecules (C=O, HCN, RN=C, and CO2) and the latest developments on C-C bond reorganization, such as metathesis * Advances in "chirally economical" non-linear phenomena, racemic catalysis, and autocatalysis * Some of the recent discoveries that have led to a renaissance in the field of organocatalysis, including the development of chiral Brönstead acids and Lewis acidic metals bearing the conjugate base of the Brönstead acids as the ligands and the chiral bi-functional acid/base catalysts The book ends with a thought-provoking perspective on the future of asymmetric catalysis that addresses both the challenges and the unlimited potential in this burgeoning field. This is an authoritative, up-to-date reference for organic chemists in academia, government, and industries, including pharmaceuticals, biotech, fine chemicals, polymers, and agriculture. It is also an excellent textbook for graduate students studying advanced organic chemistry or chemical synthesis.
Edited by the leading expert on the topic, this is the first book to present the latest developments in this exciting field. Alongside the theoretical aspects, the top contributors provide practical protocols to give readers additional important information otherwise unavailable. A must for every synthetic chemist in academia and industry.
Catalytic asymmetric synthesis has been one of the most active research areas in chemistry (Nobel Prize in 2001). The development of efficient chiral catalysts plays a crucial role in asymmetric catalysis. Although many chiral ligands/catalysts have been developed in the past decades, the most efficient catalysts are derived from a few core structures, called "privileged chiral catalysts". This ultimate "must have" and long awaited reference for every chemist working in the field of asymmetric catalysis starts with the core structure of the catalysts, explaining why a certain ligand or catalyst is so successful. It describes in detail the history, the basic structural characteristics, and the applications of these "privileged catalysts". This novel presentation provides readers with a much deeper insight into the topic and makes it a must-have for organic chemists, catalytic chemists, chemists working with/on organometallics, chemists in industry, and libraries. From the contents: * BINAP * Bisphosphacycles - From DuPhos and BPE to a Diverse Set of Broadly Applied Ligands * Josiphos Ligands: From Discovery to Technical Applications * Chiral Spiro Ligands * Chiral Bisoxazoline Ligands * PHOX Ligands * Chiral Salen Complexes * BINOL * TADDOLate Ligands * Cinchona Alkaloids * Proline Derivatives
Deals with basic principles of asymmetric catalysis focusing on its synthetic significance. Covers homogeneous asymmetric hydrogenation, asymmetric catalysis via chiral metal complexes, heterogeneous catalysis and non-organometallic catalysis. The collection of a range of stereoselective reactions illustrate various strategies and methodologies as well as their general utility.
The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. Using examples from the literature of asymmetric synthesis (more than 1300 references), the aim of this book is to present a detailed analysis of the factors that govern stereoselectivity in organic reactions. It is important to note that the references were each individually checked by the authors to verify relevance to the topics under discussion. The study of stereoselectivity has evolved from issues of diastereoselectivity, through auxiliary-based methods for the synthesis of enantiomerically pure compounds (diastereoselectivity followed by separation and auxiliary cleavage), to asymmetric catalysis. In the latter instance, enantiomers (not diastereomers) are the products, and highly selective reactions and modern purification techniques allow preparation - in a single step - of chiral substances in 99% ee for many reaction types. After an explanation of the basic physical-organic principles of stereoselectivity, the authors provide a detailed, annotated glossary of stereochemical terms. A chapter on "Analytical Methods" provides a critical overview of the most common methods for analysis of stereoisomers. The authors then follow the 'tried-and-true' format of grouping the material by reaction type. Thus, there are four chapters on carbon-carbon bond forming reactions (enolate alkylations, organometal additions to carbonyls, aldol and Michael reactions, and cycloadditions and rearrangements), one chapter on reductions and hydroborations (carbon-hydrogen bond forming reactions), and one on oxidations (carbon-oxygen and carbon-nitrogen bond forming reactions). Leading references are provided to natural product synthesis that have been accomplished using a given reaction as a key step. In addition to tables of examples that show high selectivity, a transition state analysis is presented to explain - to the current level of understanding - the stereoselectivity of each reaction. In one case (Cram's rule) the evolution of the current theory is detailed from its first tentative (1952) postulate to the current Felkin-Anh-Heathcock formalism. For other reactions, only the currently accepted rationale is presented. Examination of these rationales also exposes the weaknesses of current theories, in that they cannot always explain the experimental observations. These shortcomings provide a challenge for future mechanistic investigations.