This paper presents the correspondences of the eccentric mathematics of cardinal and integral functions and centric mathematics, or ordinary mathematics. Centric functions will also be presented in the introductory section, because they are, although widely used in undulatory physics, little known.
Many mathematicians, scientists, and engineers are familiar with the Fast Fourier Transform, a method based upon the Discrete Fourier Transform. Perhaps not so many mathematicians, scientists, and engineers recognize that the Discrete Fourier Transform is one of a family of symbolic formulae called Sinc methods. Sinc methods are based upon the Sinc function, a wavelet-like function replete with identities which yield approximations to all classes of computational problems. Such problems include problems over finite, semi-infinite, or infinite domains, problems with singularities, and boundary layer problems. Written by the principle authority on the subject, this book introduces Sinc methods to the world of computation. It serves as an excellent research sourcebook as well as a textbook which uses analytic functions to derive Sinc methods for the advanced numerical analysis and applied approximation theory classrooms. Problem sections and historical notes are included.
This volume includes 37 papers of mathematics or applied mathematics written by the author alone or in collaboration with the following co-authors: Cătălin Barbu, Mihály Bencze, Octavian Cira, Marian Niţu, Ion Pătraşcu, Mircea E. Şelariu, Rajan Alex, Xingsen Li, Tudor Păroiu, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, Yingjie Tian, Mohd Anasri, Lucian Căpitanu, Valeri Kroumov, Kimihiro Okuyama, Gabriela Tonţ, A. A. Adewara, Manoj K. Chaudhary, Mukesh Kumar, Sachin Malik, Alka Mittal, Neetish Sharma, Rakesh K. Shukla, Ashish K. Singh, Jayant Singh, Rajesh Singh,V.V. Singh, Hansraj Yadav, Amit Bhaghel, Dipti Chauhan, V. Christianto, Priti Singh, and Dmitri Rabounski. They were written during the years 2010-2014, about the hyperbolic Menelaus theorem in the Poincare disc of hyperbolic geometry, and the Menelaus theorem for quadrilaterals in hyperbolic geometry, about some properties of the harmonic quadrilateral related to triangle simedians and to Apollonius circles, about Luhn prime numbers, and also about the correspondences of the eccentric mathematics of cardinal and integral functions and centric mathematics, or ordinary mathematics; there are some notes on Crittenden and Vanden Eynden's conjecture, or on new transformations, previously non-existent in traditional mathematics, that we call centric mathematics (CM), but that became possible due to the new born eccentric mathematics, and, implicitly, to the supermathematics (SM); also, about extenics, in general, and extension innovation model and knowledge management, in particular, about advanced methods for solving contradictory problems of hybrid position-force control of the movement of walking robots by applying a 2D Extension Set, or about the notion of point-set position indicator and that of point-two sets position indicator, and the navigation of mobile robots in non-stationary and nonstructured environments; about applications in statistics, such as estimators based on geometric and harmonic mean for estimating population mean using information; about Godel’s incompleteness theorem(s) and plausible implications to artificial intelligence/life and human mind, and many more.
Highly oscillatory phenomena range across numerous areas in science and engineering and their computation represents a difficult challenge. A case in point is integrals of rapidly oscillating functions in one or more variables. The quadrature of such integrals has been historically considered very demanding. Research in the past 15 years (in which the authors played a major role) resulted in a range of very effective and affordable algorithms for highly oscillatory quadrature. This is the only monograph bringing together the new body of ideas in this area in its entirety. The starting point is that approximations need to be analyzed using asymptotic methods rather than by more standard polynomial expansions. As often happens in computational mathematics, once a phenomenon is understood from a mathematical standpoint, effective algorithms follow. As reviewed in this monograph, we now have at our disposal a number of very effective quadrature methods for highly oscillatory integrals--Filon-type and Levin-type methods, methods based on steepest descent, and complex-valued Gaussian quadrature. Their understanding calls for a fairly varied mathematical toolbox--from classical numerical analysis, approximation theory, and theory of orthogonal polynomials all the way to asymptotic analysis--yet this understanding is the cornerstone of efficient algorithms.
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.