Calculus in 3D

Calculus in 3D

Author: Zbigniew Nitecki

Publisher: American Mathematical Soc.

Published: 2018-10-16

Total Pages: 417

ISBN-13: 1470443600

DOWNLOAD EBOOK

Calculus in 3D is an accessible, well-written textbook for an honors course in multivariable calculus for mathematically strong first- or second-year university students. The treatment given here carefully balances theoretical rigor, the development of student facility in the procedures and algorithms, and inculcating intuition into underlying geometric principles. The focus throughout is on two or three dimensions. All of the standard multivariable material is thoroughly covered, including vector calculus treated through both vector fields and differential forms. There are rich collections of problems ranging from the routine through the theoretical to deep, challenging problems suitable for in-depth projects. Linear algebra is developed as needed. Unusual features include a rigorous formulation of cross products and determinants as oriented area, an in-depth treatment of conics harking back to the classical Greek ideas, and a more extensive than usual exploration and use of parametrized curves and surfaces. Zbigniew Nitecki is Professor of Mathematics at Tufts University and a leading authority on smooth dynamical systems. He is the author of Differentiable Dynamics, MIT Press; Differential Equations, A First Course (with M. Guterman), Saunders; Differential Equations with Linear Algebra (with M. Guterman), Saunders; and Calculus Deconstructed, AMS.


Two and Three Dimensional Calculus

Two and Three Dimensional Calculus

Author: Phil Dyke

Publisher: John Wiley & Sons

Published: 2018-07-23

Total Pages: 394

ISBN-13: 1119221781

DOWNLOAD EBOOK

Covers multivariable calculus, starting from the basics and leading up to the three theorems of Green, Gauss, and Stokes, but always with an eye on practical applications. Written for a wide spectrum of undergraduate students by an experienced author, this book provides a very practical approach to advanced calculus—starting from the basics and leading up to the theorems of Green, Gauss, and Stokes. It explains, clearly and concisely, partial differentiation, multiple integration, vectors and vector calculus, and provides end-of-chapter exercises along with their solutions to aid the readers’ understanding. Written in an approachable style and filled with numerous illustrative examples throughout, Two and Three Dimensional Calculus: with Applications in Science and Engineering assumes no prior knowledge of partial differentiation or vectors and explains difficult concepts with easy to follow examples. Rather than concentrating on mathematical structures, the book describes the development of techniques through their use in science and engineering so that students acquire skills that enable them to be used in a wide variety of practical situations. It also has enough rigor to enable those who wish to investigate the more mathematical generalizations found in most mathematics degrees to do so. Assumes no prior knowledge of partial differentiation, multiple integration or vectors Includes easy-to-follow examples throughout to help explain difficult concepts Features end-of-chapter exercises with solutions to exercises in the book. Two and Three Dimensional Calculus: with Applications in Science and Engineering is an ideal textbook for undergraduate students of engineering and applied sciences as well as those needing to use these methods for real problems in industry and commerce.


Calculus in the First Three Dimensions

Calculus in the First Three Dimensions

Author: Sherman K. Stein

Publisher: Courier Dover Publications

Published: 2016-03-15

Total Pages: 644

ISBN-13: 0486801144

DOWNLOAD EBOOK

Introduction to calculus for both undergraduate math majors and those pursuing other areas of science and engineering for whom calculus will be a vital tool. Solutions available as free downloads. 1967 edition.


3D Math Primer for Graphics and Game Development, 2nd Edition

3D Math Primer for Graphics and Game Development, 2nd Edition

Author: Fletcher Dunn

Publisher: CRC Press

Published: 2011-11-02

Total Pages: 848

ISBN-13: 1568817231

DOWNLOAD EBOOK

This engaging book presents the essential mathematics needed to describe, simulate, and render a 3D world. Reflecting both academic and in-the-trenches practical experience, the authors teach you how to describe objects and their positions, orientations, and trajectories in 3D using mathematics. The text provides an introduction to mathematics for game designers, including the fundamentals of coordinate spaces, vectors, and matrices. It also covers orientation in three dimensions, calculus and dynamics, graphics, and parametric curves.


Mathematics for 3D Game Programming and Computer Graphics

Mathematics for 3D Game Programming and Computer Graphics

Author: Eric Lengyel

Publisher:

Published: 2020-08

Total Pages:

ISBN-13: 9780357671092

DOWNLOAD EBOOK

Sooner or later, all game programmers run into coding issues that require an understanding of mathematics or physics concepts such as collision detection, 3D vectors, transformations, game theory, or basic calculus. Unfortunately, most programmers frequently have a limited understanding of these essential mathematics and physics concepts. MATHEMATICS AND PHYSICS FOR PROGRAMMERS, THIRD EDITION provides a simple but thorough grounding in the mathematics and physics topics that programmers require to write algorithms and programs using a non-language-specific approach. Applications and examples from game programming are included throughout, and exercises follow each chapter for additional practice. The book's companion website provides sample code illustrating the mathematical and physics topics discussed in the book.


Visualizing Mathematics with 3D Printing

Visualizing Mathematics with 3D Printing

Author: Henry Segerman

Publisher: JHU Press

Published: 2016-10-04

Total Pages: 201

ISBN-13: 1421420368

DOWNLOAD EBOOK

The first book to explain mathematics using 3D printed models. Winner of the Technical Text of the Washington Publishers Wouldn’t it be great to experience three-dimensional ideas in three dimensions? In this book—the first of its kind—mathematician and mathematical artist Henry Segerman takes readers on a fascinating tour of two-, three-, and four-dimensional mathematics, exploring Euclidean and non-Euclidean geometries, symmetry, knots, tilings, and soap films. Visualizing Mathematics with 3D Printing includes more than 100 color photographs of 3D printed models. Readers can take the book’s insights to a new level by visiting its sister website, 3dprintmath.com, which features virtual three-dimensional versions of the models for readers to explore. These models can also be ordered online or downloaded to print on a 3D printer. Combining the strengths of book and website, this volume pulls higher geometry and topology out of the realm of the abstract and puts it into the hands of anyone fascinated by mathematical relationships of shape. With the book in one hand and a 3D printed model in the other, readers can find deeper meaning while holding a hyperbolic honeycomb, touching the twists of a torus knot, or caressing the curves of a Klein quartic.


Two-Dimensional Calculus

Two-Dimensional Calculus

Author: Robert Osserman

Publisher: Courier Corporation

Published: 2014-01-05

Total Pages: 484

ISBN-13: 0486321002

DOWNLOAD EBOOK

Two-dimensional calculus is vital to the mastery of the broader field, and this text presents an extensive treatment. Advantages include the thorough integration of linear algebra and development of geometric intuition. 1986 edition.


Advanced Calculus (Revised Edition)

Advanced Calculus (Revised Edition)

Author: Lynn Harold Loomis

Publisher: World Scientific Publishing Company

Published: 2014-02-26

Total Pages: 595

ISBN-13: 9814583952

DOWNLOAD EBOOK

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.


Multivariable Calculus

Multivariable Calculus

Author: Don Shimamoto

Publisher:

Published: 2019-11-17

Total Pages: 322

ISBN-13: 9781708246990

DOWNLOAD EBOOK

This book covers the standard material for a one-semester course in multivariable calculus. The topics include curves, differentiability and partial derivatives, multiple integrals, vector fields, line and surface integrals, and the theorems of Green, Stokes, and Gauss. Roughly speaking, the book is organized into three main parts corresponding to the type of function being studied: vector-valued functions of one variable, real-valued functions of many variables, and, finally, the general case of vector-valued functions of many variables. As is always the case, the most productive way for students to learn is by doing problems, and the book is written to get to the exercises as quickly as possible. The presentation is geared towards students who enjoy learning mathematics for its own sake. As a result, there is a priority placed on understanding why things are true and a recognition that, when details are sketched or omitted, that should be acknowledged. Otherwise, the level of rigor is fairly normal. Matrices are introduced and used freely. Prior experience with linear algebra is helpful, but not required. Latest corrected printing: January 8, 2020. Updated information available online at the Open Textbook Library.


Vector Calculus

Vector Calculus

Author: Miroslav Lovric

Publisher: John Wiley & Sons

Published: 2007-01-03

Total Pages: 638

ISBN-13: 0471725692

DOWNLOAD EBOOK

This book gives a comprehensive and thorough introduction to ideas and major results of the theory of functions of several variables and of modern vector calculus in two and three dimensions. Clear and easy-to-follow writing style, carefully crafted examples, wide spectrum of applications and numerous illustrations, diagrams, and graphs invite students to use the textbook actively, helping them to both enforce their understanding of the material and to brush up on necessary technical and computational skills. Particular attention has been given to the material that some students find challenging, such as the chain rule, Implicit Function Theorem, parametrizations, or the Change of Variables Theorem.