Freshman and sophomore life sciences students respond well to the modeling approach to calculus, difference equations, and differential equations presented in this book. Examples of population dynamics, pharmacokinetics, and biologically relevant physical processes are introduced in Chapter 1, and these and other life sciences topics are developed throughout the text. The students should have studied algebra, geometry, and trigonometry, but may be life sciences students because they have not enjoyed their previous mathematics courses.
Authored by two distinguished researchers/teachers and an experiences, successful textbook author, Calculus for Life Sciences is a valuable resource for Life Science courses. As life-science departments increase the math requirements for their majors, there is a need for greater mathematic knowledge among students. This text balances rigorous mathematical training with extensive modeling of biological problems. The biological examples from health science, ecology, microbiology, genetics, and other domains, many based on cited data, are key features of this text.
The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed. Calculus for the Life Sciences features interesting, relevant applications that motivate students and highlight the utility of mathematics for the life sciences. This edition also features new ways to engage students with the material, such as Your Turn exercises.
Based on the best-selling Calculus and Its Applications by Marv Bittinger, this new text is appropriate for a two-semester calculus course for life science majors. With four new chapters and two new co-authors, Calculus for the Life Sciences continues the Bittinger reputation as one of the most student-oriented and clearly written Applied Calculus texts available. The exercises and examples have been substantially updated to include additional relevant life science applications and current topics.
Mathematics for the Life Sciences provides present and future biologists with the mathematical concepts and tools needed to understand and use mathematical models and read advanced mathematical biology books. It presents mathematics in biological contexts, focusing on the central mathematical ideas, and providing detailed explanations. The author assumes no mathematics background beyond algebra and precalculus. Calculus is presented as a one-chapter primer that is suitable for readers who have not studied the subject before, as well as readers who have taken a calculus course and need a review. This primer is followed by a novel chapter on mathematical modeling that begins with discussions of biological data and the basic principles of modeling. The remainder of the chapter introduces the reader to topics in mechanistic modeling (deriving models from biological assumptions) and empirical modeling (using data to parameterize and select models). The modeling chapter contains a thorough treatment of key ideas and techniques that are often neglected in mathematics books. It also provides the reader with a sophisticated viewpoint and the essential background needed to make full use of the remainder of the book, which includes two chapters on probability and its applications to inferential statistics and three chapters on discrete and continuous dynamical systems. The biological content of the book is self-contained and includes many basic biology topics such as the genetic code, Mendelian genetics, population dynamics, predator-prey relationships, epidemiology, and immunology. The large number of problem sets include some drill problems along with a large number of case studies. The latter are divided into step-by-step problems and sorted into the appropriate section, allowing readers to gradually develop complete investigations from understanding the biological assumptions to a complete analysis.
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. This accessible text is designed to help readers help themselves to excel. The content is organized into two parts: (1) A Library of Elementary Functions (Chapters 1–2) and (2) Calculus (Chapters 3–9). The book’s overall approach, refined by the authors’ experience with large sections of college freshmen, addresses the challenges of teaching and learning when readers’ prerequisite knowledge varies greatly. Reader-friendly features such as Matched Problems, Explore & Discuss questions, and Conceptual Insights, together with the motivating and ample applications, make this text a popular choice for today’s students and instructors.
An accessible undergraduate textbook on the essential math concepts used in the life sciences The life sciences deal with a vast array of problems at different spatial, temporal, and organizational scales. The mathematics necessary to describe, model, and analyze these problems is similarly diverse, incorporating quantitative techniques that are rarely taught in standard undergraduate courses. This textbook provides an accessible introduction to these critical mathematical concepts, linking them to biological observation and theory while also presenting the computational tools needed to address problems not readily investigated using mathematics alone. Proven in the classroom and requiring only a background in high school math, Mathematics for the Life Sciences doesn't just focus on calculus as do most other textbooks on the subject. It covers deterministic methods and those that incorporate uncertainty, problems in discrete and continuous time, probability, graphing and data analysis, matrix modeling, difference equations, differential equations, and much more. The book uses MATLAB throughout, explaining how to use it, write code, and connect models to data in examples chosen from across the life sciences. Provides undergraduate life science students with a succinct overview of major mathematical concepts that are essential for modern biology Covers all the major quantitative concepts that national reports have identified as the ideal components of an entry-level course for life science students Provides good background for the MCAT, which now includes data-based and statistical reasoning Explicitly links data and math modeling Includes end-of-chapter homework problems, end-of-unit student projects, and select answers to homework problems Uses MATLAB throughout, and MATLAB m-files with an R supplement are available online Prepares students to read with comprehension the growing quantitative literature across the life sciences A solutions manual for professors and an illustration package is available
Designed to help life sciences students understand the role mathematics has played in breakthroughs in epidemiology, genetics, statistics, physiology, and other biological areas, MODELING THE DYNAMCICS OF LIFE: CALCULUS AND PROBABILTY FOR LIFE SCIENTISTS, 3E, International Edition, provides students with a thorough grounding in mathematics, the language, and 'the technology of thought' with which these developments are created and controlled. The text teaches the skills of describing a system, translating appropriate aspects into equations, and interpreting the results in terms of the original problem. The text helps unify biology by identifying dynamical principles that underlie a great diversity of biological processes. Standard topics from calculus courses are covered, with particular emphasis on those areas connected with modeling such as discrete-time dynamical systems, differential equations, and probability and statistics.