Encompassing all aspects of calcium signalling, from methods of measuring calcium in cells to the molecular mechanisms for decoding its information, this comprehensive book balances historical aspects and state of the art developments.
Calcium Entry Channels in Non-Excitable Cells focuses on methods of investigating the structure and function of non-voltage gated calcium channels. Each chapter presents important discoveries in calcium entry pathways, specifically dealing with the molecular identification of store-operated calcium channels which were reviewed by earlier volumes in the Methods in Signal Transduction series. Crystallographic and pharmacological approaches to the study of calcium channels of epithelial cells are also discussed. Calcium ion is a messenger in most cell types. Whereas voltage gated calcium channels have been studied extensively, the non-voltage gated calcium entry channel genes have only been identified relatively recently. The book will fill this important niche.
This volume details our current understanding of the architecture and signaling capabilities of the B cell antigen receptor (BCR) in health and disease. The first chapters review new insights into the assembly of BCR components and their organization on the cell surface. Subsequent contributions focus on the molecular interactions that connect the BCR with major intracellular signaling pathways such as Ca2+ mobilization, membrane phospholipid metabolism, nuclear translocation of NF-kB or the activation of Bruton’s Tyrosine Kinase and MAP kinases. These elements orchestrate cytoplasmic and nuclear responses as well as cytoskeleton dynamics for antigen internalization. Furthermore, a key mechanism of how B cells remember their cognate antigen is discussed in detail. Altogether, the discoveries presented provide a better understanding of B cell biology and help to explain some B cell-mediated pathogenicities, like autoimmune phenomena or the formation of B cell tumors, while also paving the way for eventually combating these diseases.
This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles; Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin; Vivien Kirk is an Associate Professor in the Department of Mathematics at the University of Auckland, New Zealand; James Sneyd is a Professor in the Department of Mathematics at The University of Auckland, New Zealand.
Store-operated calcium channels are found in most animal cells and regulate many cellular functions including cell division, growth, differentiation, and cell death. This volume provides a concise and informative overview of the principles of store-operated calcium entry and the key developments in the field from researchers who have led these advances. The overall goal of the volume is to provide interested students and investigators with sufficient information to enable a broad understanding of the progress and current excitement in the field. The volume contains a wealth of information that even experienced investigators in the field will find useful. - The volume provides a comprehensive overview of the mechanisms and functions of store-operated calcium channels - Contributors are authoritative researchers who have produced important advances in the field - The volume is well-illustrated with cartoons and data to facilitate easy comprehension of the subject
This volume contains a unique selection of chapters covering a wealth of contemporary topics in this ubiquitous and diverse system of cell signaling. It offers much more than the accessibility and authority of a primary text book, exploring topics ranging from the fundamental aspects of calcium signaling to its varied clinical implications. It presents comprehensive discussion of cutting-edge research alongside detailed analysis of critical issues, at the same time as setting out testable hypotheses that point the way to future scientific endeavors. The contributions feature material on theoretical and methodological topics as well as related subjects including mathematical modeling and simulations. They examine calcium signaling in a host of contexts, from mammalian cells to bacteria, fruit fly and zebrafish. With much of interest to newcomers to the field as well as seasoned experts, this new publication is both wide-ranging and authoritative. The chapter “Calcium Signaling: From Basic to Bedside” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
A comprehensive compendium of scholarly contributions relating to bacterial virulence gene regulation. • Provides insights into global control and the switch between distinct infectious states (e.g., acute vs. chronic). • Considers key issues about the mechanisms of gene regulation relating to: surface factors, exported toxins and export mechanisms. • Reflects on how the regulation of intracellular lifestyles and the response to stress can ultimately have an impact on the outcome of an infection. • Highlights and examines some emerging regulatory mechanisms of special significance. • Serves as an ideal compendium of valuable topics for students, researchers and faculty with interests in how the mechanisms of gene regulation ultimately affect the outcome of an array of bacterial infectious diseases.
Environmental insults such as extremes of temperature, extremes of water status as well as deteriorating soil conditions pose major threats to agriculture and food security. Employing contemporary tools and techniques from all branches of science, attempts are being made worldwide to understand how plants respond to abiotic stresses with the aim to help manipulate plant performance that will be better suited to withstand these stresses. This book on abiotic stress attempts to search for possible answers to several basic questions related to plant responses towards abiotic stresses. Presented in this book is a holistic view of the general principles of stress perception, signal transduction and regulation of gene expression. Further, chapters analyze not only model systems but extrapolate interpretations obtained from models to crops. Lastly, discusses how stress-tolerant crop or model plants have been or are being raised through plant breeding and genetic engineering approaches. Twenty three chapters, written by international authorities, integrate molecular details with overall plant structure and physiology, in a text-book style, including key references.
Bridging the gap between basic scientific advances and the understanding of liver disease — the extensively revised new edition of the premier text in the field. The latest edition of The Liver: Biology and Pathobiology remains a definitive volume in the field of hepatology, relating advances in biomedical sciences and engineering to understanding of liver structure, function, and disease pathology and treatment. Contributions from leading researchers examine the cell biology of the liver, the pathobiology of liver disease, the liver’s growth, regeneration, metabolic functions, and more. Now in its sixth edition, this classic text has been exhaustively revised to reflect new discoveries in biology and their influence on diagnosing, managing, and preventing liver disease. Seventy new chapters — including substantial original sections on liver cancer and groundbreaking advances that will have significant impact on hepatology — provide comprehensive, fully up-to-date coverage of both the current state and future direction of hepatology. Topics include liver RNA structure and function, gene editing, single-cell and single-molecule genomic analyses, the molecular biology of hepatitis, drug interactions and engineered drug design, and liver disease mechanisms and therapies. Edited by globally-recognized experts in the field, this authoritative volume: Relates molecular physiology to understanding disease pathology and treatment Links the science and pathology of the liver to practical clinical applications Features 16 new “Horizons” chapters that explore new and emerging science and technology Includes plentiful full-color illustrations and figures The Liver: Biology and Pathobiology, Sixth Edition is an indispensable resource for practicing and trainee hepatologists, gastroenterologists, hepatobiliary and liver transplant surgeons, and researchers and scientists in areas including hepatology, cell and molecular biology, virology, and drug metabolism.