Complex Projective Geometry
Author: G. Ellingsrud
Publisher: Cambridge University Press
Published: 1992-07-30
Total Pages: 354
ISBN-13: 0521433525
DOWNLOAD EBOOKA volume of papers describing new methods in algebraic geometry.
Read and Download eBook Full
Author: G. Ellingsrud
Publisher: Cambridge University Press
Published: 1992-07-30
Total Pages: 354
ISBN-13: 0521433525
DOWNLOAD EBOOKA volume of papers describing new methods in algebraic geometry.
Author: David M Calderbank
Publisher: American Mathematical Society
Published: 2021-02-10
Total Pages: 137
ISBN-13: 1470443007
DOWNLOAD EBOOKThe authors develop in detail the theory of (almost) c-projective geometry, a natural analogue of projective differential geometry adapted to (almost) complex manifolds. The authors realise it as a type of parabolic geometry and describe the associated Cartan or tractor connection. A Kähler manifold gives rise to a c-projective structure and this is one of the primary motivations for its study. The existence of two or more Kähler metrics underlying a given c-projective structure has many ramifications, which the authors explore in depth. As a consequence of this analysis, they prove the Yano–Obata Conjecture for complete Kähler manifolds: if such a manifold admits a one parameter group of c-projective transformations that are not affine, then it is complex projective space, equipped with a multiple of the Fubini-Study metric.
Author: C. R. Wylie
Publisher: Courier Corporation
Published: 2011-09-12
Total Pages: 578
ISBN-13: 0486141705
DOWNLOAD EBOOKThis lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.
Author: A. Seidenberg
Publisher: Courier Corporation
Published: 2012-06-14
Total Pages: 244
ISBN-13: 0486154734
DOWNLOAD EBOOKAn ideal text for undergraduate courses, this volume takes an axiomatic approach that covers relations between the basic theorems, conics, coordinate systems and linear transformations, quadric surfaces, and the Jordan canonical form. 1962 edition.
Author: Olive Whicher
Publisher: Rudolf Steiner Press
Published: 2013
Total Pages: 294
ISBN-13: 185584379X
DOWNLOAD EBOOKWhicher explores the concepts of polarity and movement in modern projective geometry as a discipline of thought that transcends the limited and rigid space and forms of Euclid, and the corresponding material forces conceived in classical mechanics. Rudolf Steiner underlined the importance of projective geometry as, "a method of training the imaginative faculties of thinking, so that they become an instrument of cognition no less conscious and exact than mathematical reasoning." This seminal approach allows for precise scientific understanding of the concept of creative fields of formative (etheric) forces at work in nature--in plants, animals and in the human being. Olive Whicher's groundbreaking book presents an accessible--non-mathematician's--approach to projective geometry. Profusely illustrated, and written with fire and intuitive genius, this work will be of interest to anyone wishing to cultivate the power of inner visualization in a realm of structural beauty.
Author: T. Ewan Faulkner
Publisher: Courier Corporation
Published: 2013-02-20
Total Pages: 148
ISBN-13: 0486154890
DOWNLOAD EBOOKHighlighted by numerous examples, this book explores methods of the projective geometry of the plane. Examines the conic, the general equation of the 2nd degree, and the relationship between Euclidean and projective geometry. 1960 edition.
Author: Eduardo Casas-Alvero
Publisher: Susaeta
Published: 2014
Total Pages: 640
ISBN-13: 9783037191385
DOWNLOAD EBOOKProjective geometry is concerned with the properties of figures that are invariant by projecting and taking sections. It is considered one of the most beautiful parts of geometry and plays a central role because its specializations cover the whole of the affine, Euclidean and non-Euclidean geometries. The natural extension of projective geometry is projective algebraic geometry, a rich and active field of research. The results and techniques of projective geometry are intensively used in computer vision. This book contains a comprehensive presentation of projective geometry, over the real and complex number fields, and its applications to affine and Euclidean geometries. It covers central topics such as linear varieties, cross ratio, duality, projective transformations, quadrics and their classifications--projective, affine and metric--as well as the more advanced and less usual spaces of quadrics, rational normal curves, line complexes and the classifications of collineations, pencils of quadrics and correlations. Two appendices are devoted to the projective foundations of perspective and to the projective models of plane non-Euclidean geometries. The book uses modern language, is based on linear algebra, and provides complete proofs. Exercises are proposed at the end of each chapter; many of them are beautiful classical results. The material in this book is suitable for courses on projective geometry for undergraduate students, with a working knowledge of a standard first course on linear algebra. The text is a valuable guide to graduate students and researchers working in areas using or related to projective geometry, such as algebraic geometry and computer vision, and to anyone looking for an advanced view of geometry as a whole.
Author: Albrecht Beutelspacher
Publisher: Cambridge University Press
Published: 1998-01-29
Total Pages: 272
ISBN-13: 9780521483643
DOWNLOAD EBOOKProjective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.
Author: John Stillwell
Publisher: Springer Science & Business Media
Published: 2005-08-09
Total Pages: 240
ISBN-13: 0387255303
DOWNLOAD EBOOKThis book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Author: Jürgen Richter-Gebert
Publisher: Springer Science & Business Media
Published: 2011-02-04
Total Pages: 573
ISBN-13: 3642172865
DOWNLOAD EBOOKProjective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.