Statistics Made Simple for School Leaders

Statistics Made Simple for School Leaders

Author: Susan Rovezzi Carroll

Publisher: R&L Education

Published: 2002-10-16

Total Pages: 162

ISBN-13: 146165419X

DOWNLOAD EBOOK

The chief executive officer of a corporation is not much different from a public school administrator. While CEOs base many of their decisions on data, for school administrators, this type of research may conjure up miserable memories of searching for information to meet a graduate school requirement. However, the value of data-based decision making will continue to escalate and the school community—students, teachers, parents and the general public—expect this information to come from their administrators. Administrators are called on to be accountable, but few are capable of presenting the mountain of data that they collect in a cohesive and strategic manner. Most statistical books are focused on statistical theory versus application, but Statistics Made Simple for School Leaders presents statistics in a simple, practical, conceptual, and immediately applicable manner. It enables administrators to take their data and manage it into strategic information so the results can be used for action plans that benefit the school system. The approach is 'user friendly' and leaves the reader with a confident can-do attitude to communicate results and plans to staff and the community.


BUSINESS STATISTICS & ANALYTICS FOR DECISION MAKING: Made Simple

BUSINESS STATISTICS & ANALYTICS FOR DECISION MAKING: Made Simple

Author: Dr. Mukul Burghate I Dr. Padmakar Shahare

Publisher: mukul burghate

Published:

Total Pages: 140

ISBN-13:

DOWNLOAD EBOOK

The analysis of statistics in business for better decision making is nowadays called Big Data Analytics."Big data analytics refers to the process of collecting, organizing and analyzing large sets of data (called big data) to discover patterns and other useful information. Big data analytics can help organizations to better understand the information contained within the data and will also help identify the data that is most important to the business and future business decisions. Analysts working with big data basically want the knowledge that comes from analyzing the data."The purpose of this textbook is to present an introduction to the BUSINESS STATISTICS & ANALYTICS FOR DECISION MAKING subject of Management & Commerce. The book contains the syllabus from basics of the subjects going into the intricacies of the subjects. All the concepts have been explained with relevant Numerals, examples and diagrams to make it interesting for the readers.An attempt is made here by the experts to assist the students by way of providing Study Material as per the curriculum with non-commercial considerations. However, it is implicit that these are exam-oriented Study Material and students are advised to attend regular lectures in the Institute and utilize reference books available in the library for In-depth knowledge.We owe to many websites and their free contents; we would like to specially acknowledge contents of website www.wikipedia.com and various authors whose writings formed the basis for this book. We acknowledge our thanks to them. At the end we would like to say that there is always a room for improvement in whatever we do. We would appreciate any suggestions regarding this study material from the readers so that the contents can be made more interesting and meaningful. Readers can email their queries and doubts to our authors on [email protected]. We shall be glad to help you immediately. Authors: Dr Mukul Burghate and Dr Padmakar Shahare


Business Statistics for Contemporary Decision Making

Business Statistics for Contemporary Decision Making

Author: Ignacio Castillo

Publisher: John Wiley & Sons

Published: 2023-05-08

Total Pages: 850

ISBN-13: 1119983223

DOWNLOAD EBOOK

Show students why business statistics is an increasingly important business skill through a student-friendly pedagogy. In this fourth Canadian edition of Business Statistics For Contemporary Decision Making authors Ken Black, Tiffany Bayley, and Ignacio Castillo uses current real-world data to equip students with the business analytics techniques and quantitative decision-making skills required to make smart decisions in today's workplace.


Business Analytics for Decision Making

Business Analytics for Decision Making

Author: Steven Orla Kimbrough

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 308

ISBN-13: 1315362597

DOWNLOAD EBOOK

Business Analytics for Decision Making, the first complete text suitable for use in introductory Business Analytics courses, establishes a national syllabus for an emerging first course at an MBA or upper undergraduate level. This timely text is mainly about model analytics, particularly analytics for constrained optimization. It uses implementations that allow students to explore models and data for the sake of discovery, understanding, and decision making. Business analytics is about using data and models to solve various kinds of decision problems. There are three aspects for those who want to make the most of their analytics: encoding, solution design, and post-solution analysis. This textbook addresses all three. Emphasizing the use of constrained optimization models for decision making, the book concentrates on post-solution analysis of models. The text focuses on computationally challenging problems that commonly arise in business environments. Unique among business analytics texts, it emphasizes using heuristics for solving difficult optimization problems important in business practice by making best use of methods from Computer Science and Operations Research. Furthermore, case studies and examples illustrate the real-world applications of these methods. The authors supply examples in Excel®, GAMS, MATLAB®, and OPL. The metaheuristics code is also made available at the book's website in a documented library of Python modules, along with data and material for homework exercises. From the beginning, the authors emphasize analytics and de-emphasize representation and encoding so students will have plenty to sink their teeth into regardless of their computer programming experience.


Statistics for Business

Statistics for Business

Author: Robert Stine

Publisher: Pearson

Published: 2015-08-17

Total Pages: 867

ISBN-13: 013442445X

DOWNLOAD EBOOK

In Statistics for Business: Decision Making and Analysis, authors Robert Stine and Dean Foster of the University of Pennsylvania’s Wharton School, take a sophisticated approach to teaching statistics in the context of making good business decisions. The authors show students how to recognize and understand each business question, use statistical tools to do the analysis, and how to communicate their results clearly and concisely. In addition to providing cases and real data to demonstrate real business situations, this text provides resources to support understanding and engagement. A successful problem-solving framework in the 4-M Examples (Motivation, Method, Mechanics, Message) model a clear outline for solving problems, new What Do You Think questions give students an opportunity to stop and check their understanding as they read, and new learning objectives guide students through each chapter and help them to review major goals. Software Hints provide instructions for using the most up-to-date technology packages. The Second Edition also includes expanded coverage and instruction of Excel® 2010.


Data Science for Business and Decision Making

Data Science for Business and Decision Making

Author: Luiz Paulo Favero

Publisher: Academic Press

Published: 2019-04-11

Total Pages: 1246

ISBN-13: 0128112174

DOWNLOAD EBOOK

Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®. - Combines statistics and operations research modeling to teach the principles of business analytics - Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business - Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs


Management Decision-Making, Big Data and Analytics

Management Decision-Making, Big Data and Analytics

Author: Simone Gressel

Publisher: SAGE

Published: 2020-10-12

Total Pages: 354

ISBN-13: 1529738288

DOWNLOAD EBOOK

Accessible and concise, this exciting new textbook examines data analytics from a managerial and organizational perspective and looks at how they can help managers become more effective decision-makers. The book successfully combines theory with practical application, featuring case studies, examples and a ‘critical incidents’ feature that make these topics engaging and relevant for students of business and management. The book features chapters on cutting-edge topics, including: • Big data • Analytics • Managing emerging technologies and decision-making • Managing the ethics, security, privacy and legal aspects of data-driven decision-making The book is accompanied by an Instructor’s Manual, PowerPoint slides and access to journal articles. Suitable for management students studying business analytics and decision-making at undergraduate, postgraduate and MBA levels.


Business Intelligence

Business Intelligence

Author: Carlo Vercellis

Publisher: John Wiley & Sons

Published: 2011-08-10

Total Pages: 314

ISBN-13: 1119965470

DOWNLOAD EBOOK

Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.


Data-Driven Business Decisions

Data-Driven Business Decisions

Author: Chris J. Lloyd

Publisher: John Wiley & Sons

Published: 2011-10-25

Total Pages: 512

ISBN-13: 0470619600

DOWNLOAD EBOOK

A hands-on guide to the use of quantitative methods and software for making successful business decisions The appropriate use of quantitative methods lies at the core of successful decisions made by managers, researchers, and students in the field of business. Providing a framework for the development of sound judgment and the ability to utilize quantitative and qualitative approaches, Data Driven Business Decisions introduces readers to the important role that data plays in understanding business outcomes, addressing four general areas that managers need to know about: data handling and Microsoft Excel, uncertainty, the relationship between inputs and outputs, and complex decisions with trade-offs and uncertainty. Grounded in the author's own classroom approach to business statistics, the book reveals how to use data to understand the drivers of business outcomes, which in turn allows for data-driven business decisions. A basic, non-mathematical foundation in statistics is provided, outlining for readers the tools needed to link data with business decisions; account for uncertainty in the actions of others and in patterns revealed by data; handle data in Excel; translate their analysis into simple business terms; and present results in simple tables and charts. The author discusses key data analytic frameworks, such as decision trees and multiple regression, and also explores additional topics, including: Use of the Excel® functions Solver and Goal Seek Partial correlation and auto-correlation Interactions and proportional variation in regression models Seasonal adjustment and what it reveals Basic portfolio theory as an introduction to correlations Chapters are introduced with case studies that integrate simple ideas into the larger business context, and are followed by further details, raw data, and motivating insights. Algebraic notation is used only when necessary, and throughout the book, the author utilizes real-world examples from diverse areas such as market surveys, finance, economics, and business ethics. Excel® add-ins StatproGo and TreePlan are showcased to demonstrate execution of the techniques, and a related website features extensive programming instructions as well as insights, data sets, and solutions to problems included in the material. Data Driven Business Decisions is an excellent book for MBA quantitative analysis courses or undergraduate general statistics courses. It also serves as a valuable reference for practicing MBAs and practitioners in the fields of statistics, business, and finance.