A third or more of the energy consumption of industrialized countries is expended on creating acceptable thermal and lighting conditions in buildings. As a result, building heat transfer is keenly important to the design of buildings, and the resulting analytical theory forms the basis of most design procedures. Analytical Theory of Building Heat Transfer is the first comprehensive reference of its kind, a one-volume compilation of current findings on heat transfer relating to the thermal behavior of buildings, forming a logical basis for current design procedures.
Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *underpins and extends the themes of the author's previous books: Heating and Water Services Design in Buildings; Energy Management and Operational Costs in Buildings Heat and Mass Transfer in Building Services Design combines theory with practical application for building services professional and students. It will also be beneficial to technicians and undergraduate students on courses in construction and mechanical engineering.
The book presents the theoretical background of building physics, dealing with the evaluation of physical phenomena related to heat transfer and energy use in buildings, water and water vapour transfer in building structures, daylighting and electric lighting of buildings, sound transmission in building structures and protection against noise, the occurrence and spread of fires in buildings and the thermal response of cities. It contains numerical and computational evaluation methods, numerous computational case studies and examples of experimental analyses. The book demonstrates that the considered physical processes affect the quality of living and working comfort in indoor and outdoor environment.
The second edition of this reliable text provides thorough understanding of essential design procedures. Updated and extended, this invaluable guide continues to resource built environment students.
Bad experiences with construction quality, the energy crises of 1973 and 1979, complaints about "sick buildings", thermal, acoustical, visual and olfactory discomfort, the need for good air quality, the move towards more sustainability - all these have accelerated the development of a field that, for a long time, was hardly more than an academic exercise: building physics (in English speaking countries sometimes referred to as building science). The discipline embraces domains such as heat and mass transfer, building acoustics, lighting, indoor environmental quality and energy efficiency. In some countries, fire safety is also included. Through the application of physical knowledge and its combination with information coming from other disciplines, the field helps to understand the physical phenomena governing building parts, building envelope, whole buildings and built environment performance, although for the last the wording "urban physics" is used. Today, building physics has become a key player on the road to a performance based building design. The book deals with the description, analysis and modeling of heat, air and moisture transport in building assemblies and whole buildings with main emphasis on the building engineering applications, including examples. The physical transport processes determine the performance of the building envelope and may influence the serviceability of the structure and the whole building. Compared to the second edition, in this third edition the text has partially been revised and extended.
This book offers a comprehensive presentation of the most important phenomena in building physics: heat transfer, moisture/humidity, sound/acoustics and illumination. As the book is primarily aimed at engineers, it addresses technical issues with the necessary pragmatism and incorporates many practical examples and related international standards. In order to ensure a complete understanding, it also explains the underlying physical principles and relates them to practical aspects in a simple and clear manner. The relationships between the various phenomena of building physics are clarified through consistent cross-referencing of formulas and ideas. The second edition features both new and revised sections on topics such as energy balance, solar gain, ventilation, road traffic and daylighting and takes into account new developments in international standards. It newly features almost 200 illustrations and 21 videos worth of supplementary material. The book is primarily aimed at students of civil engineering and architecture, as well as scientists and practitioners in these fields who wish to deepen or broaden their knowledge of topics within building physics.
The art and the science of building systems design evolve continuously as designers, practitioners, and researchers all endeavor to improve the performance of buildings and the comfort and productivity of their occupants. Retaining coverage from the original second edition while updating the information in electronic form, Heating and Cooling of Buildings: Design for Efficiency, Revised Second Edition presents the technical basis for designing the lighting and mechanical systems of buildings. Along with numerous homework problems, the revised second edition offers a full chapter on economic analysis and optimization, new heating and cooling load procedures and databases, and simplified procedures for ground coupled heat transfer calculations. The accompanying CD-ROM contains an updated version of the Heating and Cooling of Buildings (HCB) software program as well as electronic appendices that include over 1,000 tables in HTML format that can be searched by major categories, a table list, or an index of topics. Ancillary information is available on the book’s website www.hcbcentral.com From materials to computers, this edition explores the latest technologies exerting a profound effect on the design and operation of buildings. Emphasizing design optimization and critical thinking, the book continues to be the ultimate resource for understanding energy use in buildings.
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
PCM Enhanced Building Envelopes presents the latest research in the field of thermal energy storage technologies that can be applied to solar heating and cooling with the aim of shifting and reducing building energy demand. It discusses both practical and technical issues, as well as the advantages of using common phase change materials (PCMs) in buildings as a more efficient, novel solution for passive solar heating/cooling strategies. The book includes qualitative and quantitative descriptions of the science, technology and practices of PCM-based building envelopes, and reflects recent trends by placing emphasis on energy storage solutions within building walls, floors, ceilings, façades, windows, and shading devices. With the aim of assessing buildings’ energy performance, the book provides advanced modeling and simulation tools as a theoretical basis for the analysis of PCM-based building envelopes in terms of heat storage and transfer. This book will be of interest to all those dealing with building energy analysis such as researchers, academics, students and professionals in the fields of mechanical and civil engineering and architectural design