Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure

Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure

Author: Pascal Auscher

Publisher: Springer Nature

Published: 2023-08-28

Total Pages: 310

ISBN-13: 3031299736

DOWNLOAD EBOOK

In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents. Prior to this work, only the two-dimensional situation was fully understood. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established. The presented uniqueness results are completely new, and the authors also elucidate optimal ranges for problems with fractional regularity data. The first part of the monograph, which can be read independently, provides optimal ranges of exponents for functional calculus and adapted Hardy spaces for the associated boundary operator. Methods use and improve, with new results, all the machinery developed over the last two decades to study such problems: the Kato square root estimates and Riesz transforms, Hardy spaces associated to operators, off-diagonal estimates, non-tangential estimates and square functions, and abstract layer potentials to replace fundamental solutions in the absence of local regularity of solutions.


Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure

Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure

Author: Pascal Auscher

Publisher: Birkhäuser

Published: 2024-07-28

Total Pages: 0

ISBN-13: 9783031299759

DOWNLOAD EBOOK

In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents. Prior to this work, only the two-dimensional situation was fully understood. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established. The presented uniqueness results are completely new, and the authors also elucidate optimal ranges for problems with fractional regularity data. The first part of the monograph, which can be read independently, provides optimal ranges of exponents for functional calculus and adapted Hardy spaces for the associated boundary operator. Methods use and improve, with new results, all the machinery developed over the last two decades to study such problems: the Kato square root estimates and Riesz transforms, Hardy spaces associated to operators, off-diagonal estimates, non-tangential estimates and square functions, and abstract layer potentials to replace fundamental solutions in the absence of local regularity of solutions.


Integro-Differential Elliptic Equations

Integro-Differential Elliptic Equations

Author: Xavier Fernández-Real

Publisher: Springer Nature

Published: 2024

Total Pages: 409

ISBN-13: 3031542428

DOWNLOAD EBOOK

Zusammenfassung: This monograph offers a self-contained introduction to the regularity theory for integro-differential elliptic equations, mostly developed in the 21st century. This class of equations finds relevance in fields such as analysis, probability theory, mathematical physics, and in several contexts in the applied sciences. The work gives a detailed presentation of all the necessary techniques, with a primary focus on the main ideas rather than on proving all the results in their greatest generality. The basic building blocks are presented first, with the study of the square root of the Laplacian, and weak solutions to linear equations. Subsequently, the theory of viscosity solutions to nonlinear equations is developed, and proofs are provided for the main known results in this context. The analysis finishes with the investigation of obstacle problems for integro-differential operators and establishes the regularity of solutions and free boundaries. A distinctive feature of this work lies in its presentation of nearly all covered material in a monographic format for the first time, and several proofs streamline, and often simplify, those in the original papers. Furthermore, various open problems are listed throughout the chapters


Author:

Publisher: Springer Nature

Published:

Total Pages: 279

ISBN-13: 3031737377

DOWNLOAD EBOOK


Bernoulli Free-Boundary Problems

Bernoulli Free-Boundary Problems

Author: Eugene Shargorodsky

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 86

ISBN-13: 0821841890

DOWNLOAD EBOOK

Questions of existence, multiplicity, and regularity of free boundaries for prescribed data need to be addressed and their solutions lead to nonlinear problems. In this paper an equivalence is established between Bernoulli free-boundary problems and a class of equations for real-valued functions of one real variable.


Encyclopaedia of Mathematics

Encyclopaedia of Mathematics

Author: Michiel Hazewinkel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 639

ISBN-13: 9401512795

DOWNLOAD EBOOK

This is the second supplementary volume to Kluwer's highly acclaimed eleven-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing eleven volumes, and together these twelve volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.


Elliptic Boundary Value Problems with Fractional Regularity Data

Elliptic Boundary Value Problems with Fractional Regularity Data

Author: Alex Amenta

Publisher: American Mathematical Soc.

Published: 2018-04-03

Total Pages: 162

ISBN-13: 1470442507

DOWNLOAD EBOOK

A co-publication of the AMS and Centre de Recherches Mathématiques In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy–Sobolev and Besov spaces. The authors use the so-called “first order approach” which uses minimal assumptions on the coefficients and thus allows for complex coefficients and for systems of equations. This self-contained exposition of the first order approach offers new results with detailed proofs in a clear and accessible way and will become a valuable reference for graduate students and researchers working in partial differential equations and harmonic analysis.