General Principles of Quantum Field Theory

General Principles of Quantum Field Theory

Author: N.N. Bogolubov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 714

ISBN-13: 9400904916

DOWNLOAD EBOOK

The majority of the "memorable" results of relativistic quantum theory were obtained within the framework of the local quantum field approach. The explanation of the basic principles of the local theory and its mathematical structure has left its mark on all modern activity in this area. Originally, the axiomatic approach arose from attempts to give a mathematical meaning to the quantum field theory of strong interactions (of Yukawa type). The fields in such a theory are realized by operators in Hilbert space with a positive Poincare-invariant scalar product. This "classical" part of the axiomatic approach attained its modern form as far back as the sixties. * It has retained its importance even to this day, in spite of the fact that nowadays the main prospects for the description of the electro-weak and strong interactions are in connection with the theory of gauge fields. In fact, from the point of view of the quark model, the theory of strong interactions of Wightman type was obtained by restricting attention to just the "physical" local operators (such as hadronic fields consisting of ''fundamental'' quark fields) acting in a Hilbert space of physical states. In principle, there are enough such "physical" fields for a description of hadronic physics, although this means that one must reject the traditional local Lagrangian formalism. (The connection is restored in the approximation of low-energy "phe nomenological" Lagrangians.


Adventures in Theoretical Physics

Adventures in Theoretical Physics

Author: Stephen L. Adler

Publisher: World Scientific

Published: 2006

Total Pages: 761

ISBN-13: 9812563709

DOWNLOAD EBOOK

During the period 1964-1972, Stephen L. Adler wrote seminal papers on high energy neutrino processes, current algebras, soft pion theorems, sum rules, and perturbation theory anomalies that helped lay the foundations for our current standard model of elementary particle physics. These papers are reprinted here together with detailed historical commentaries describing how they evolved, their relation to other work in the field, and their connection to recent literature. Later important work by Dr. Adler on a wide range of topics in fundamental theory, phenomenology, and numerical methods, and their related historical background, is also covered in the commentaries and reprints. This book will be a valuable resource for graduate students and researchers in the fields in which Dr. Adler has worked, and for historians of science studying physics in the final third of the twentieth century, a period in which an enduring synthesis was achieved.


Dynamical Systems and Irreversibility

Dynamical Systems and Irreversibility

Author: Ioannis Antoniou

Publisher: John Wiley & Sons

Published: 2003-10-03

Total Pages: 379

ISBN-13: 0471234273

DOWNLOAD EBOOK

Leading research, perspectives, and analysis of dynamical systems and irreversibility Edited by Nobel Prize winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest. Volume 122 collects papers from the XXI Solvay Conference on Physics, dedicated to the exploration of "Dynamical Systems and Irreversibility." Ioannis Antoniou, Deputy Director of the International Solvay Institutes for Physics and Chemistry, edits and assembles this cutting-edge research, including articles such as "Non-Markovian Effects in the Standard Map," "Harmonic Analysis of Unstable Systems," "Age and Age Fluctuations in an Unstable Quantum System," and discussion of many more subjects. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.


Hard Ball Systems and the Lorentz Gas

Hard Ball Systems and the Lorentz Gas

Author: D. Szasz

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 458

ISBN-13: 366204062X

DOWNLOAD EBOOK

Hard Ball Systems and the Lorentz Gas are fundamental models arising in the theory of Hamiltonian dynamical systems. Moreover, in these models, some key laws of statistical physics can also be tested or even established by mathematically rigorous tools. The mathematical methods are most beautiful but sometimes quite involved. This collection of surveys written by leading researchers of the fields - mathematicians, physicists or mathematical physicists - treat both mathematically rigourous results, and evolving physical theories where the methods are analytic or computational. Some basic topics: hyperbolicity and ergodicity, correlation decay, Lyapunov exponents, Kolmogorov-Sinai entropy, entropy production, irreversibility. This collection is a unique introduction into the subject for graduate students, postdocs or researchers - in both mathematics and physics - who want to start working in the field.


Scattering Theory in Mathematical Physics

Scattering Theory in Mathematical Physics

Author: J.A. Lavita

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 398

ISBN-13: 9401021473

DOWNLOAD EBOOK

These proceedings contain lectures given at the N.A.T.O. Advanced Study Institute entitled "Scattering Theory in Mathematics and Physics" held in Denver, Colorado, June 11-29, 1973. We have assembled the main series of lectures and some presented by other participants that seemed naturally to complement them. Unfortunately the size of this volume does not allow for a full account of all the contributions made at the Conference; however, all present were pleased by the number and breadth of those topics covered in the informal afternoon sessions. The purpose of the meeting, as reflected in its title, was to examine the single topic of scattering theory in as many of its manifestations as possible, i.e. as a hub of concepts and techniques from both mathematics and physics. The format of all the topics presented here is mathematical. The physical content embraces classical and quantum mechanical scattering, N-body systems and quantum field theoretical models. Left out are such subjects as the so-called analytic S-matrix theory and phenomeno logical models for high energy scattering. We would like to thank the main lecturers for their excellent presentations and written summaries. They provided a focus for the exceptionally strong interaction among the participants and we hope that some of the coherence achieved is reflected in these published notes. We have made no attempt to unify notation.